Abstract:
A prosthetic limb in amputation rehabilitation, having a forearm and a hand with four fingers and a thumb, with the wrist and the fingers & thumb thereof being fully independently controlled by nerve signals originating in the amputee's brain and not being controlled by the actions of nearby muscles in the amputee's upper arm or shoulder. Control of the prosthesis is achieved by a fully contained electronic unit in the forearm of the prosthesis that receives neural signals from the brain, converts the analog neural signals to digital signals that are fed into an artificial intelligence engine circuit that utilizes a library of algorithms to learn from the brain what the signals are that will produce a desired hand and finger movement, then convert its computed digital output to analog electrical signals that are fed to the prosthetic hand and finger to produce actual motion as instructed by the brain.
Abstract:
A microswitching device includes a base, a fixed portion joined to the base, a movable portion extending along the base and having a fixed end fixed to the fixed portion, a movable contact electrode film provided on a side of the movable portion opposite the base, a pair of fixed contact electrodes joined to the fixed portion and having a region opposing the movable contact electrode film, a movable driving electrode film provided on a side of the movable portion opposite the base, and a fixed driving electrode having a region opposing the movable driving electrode film. The movable driving electrode film is thinner than the movable contact electrode film. The fixed driving electrode is joined to the fixed portion joined to the base.
Abstract:
A micro-switching device includes a movable electrode provided on a movable support having an end fixed to a fixing member. The switching device also includes first and second stationary electrodes. The movable electrode includes first and second contact portions. The first stationary electrode includes a third contact portion facing the first contact portion of the movable electrode. The second stationary electrode includes a fourth contact portion facing the second contact portion of the movable electrode. The distance between the first and the third contact portions is smaller than the distance between the second and the fourth contact portions. The switching device further includes a driving mechanism having a driving force generation region provided on the movable support. The center of gravity of the driving force generation region is closer to the second contact portion than to the first contact portion.
Abstract:
A micro-switching device includes a fixing portion, a movable portion, a first electrode with first and second contacts, a second electrode with a third contact contacting the first contact, and a third electrode with a fourth contact opposing the second contact. In manufacturing the micro-switching device., the first electrode is formed on a substrate, and a sacrifice layer is formed on the substrate to cover the first electrode. Then, a first recess and a shallower second recess are formed in the sacrifice layer at a position corresponding to the first electrode. The second electrode is formed to have a portion opposing the first electrode via the sacrifice layer, and to fill the first recess. The third electrode is formed to have a portion opposing the first electrode via the sacrifice layer; and to fill the second recess. Thereafter the sacrifice layer is removed.
Abstract:
A switch includes a movable portion, a first electrode and a second electrode. The movable portion is provided on a substrate and moves with respect to the substrate. The first electrode is provided on the movable portion. The second electrode is able to contact with the first electrode and is fixed to the substrate. f×Ro×C≦1.6×10−4 when an operation frequency is represented as “f” (Hz), a transmission impedance is represented as “Ro” (Ω), and a capacitance in “OFF” state between the first electrode and the second electrode is represented as “C” (F).
Abstract:
An apparatus, system, and method are disclosed for providing a network interface to a small computer system interface (“SCSI”) storage device driver. The method includes detecting an event in one of a storage device and a SCSI device driver of the storage device and comparing an event identifier associated with the event to a list of event identifiers. The method includes suspending an application in communication with the storage device through the SCSI device driver and sending a request associated with the event to a remote event manager over a transaction control protocol/Internet protocol (“TCP/IP”) connection, each in response to the event identifier matching a listed event identifier. The method includes receiving a response related to the event from the remote event manager over a TCP/IP connection. The method includes resuming the application after sending the response to the storage device through the SCSI device driver or failing the application.
Abstract:
A switch includes a movable portion, a first electrode and a second electrode. The movable portion is provided on a substrate and moves with respect to the substrate. The first electrode is provided on the movable portion. The second electrode is able to contact with the first electrode and is fixed to the substrate. f×Ro×C≦1.6×10−4 when an operation frequency is represented as “f” (Hz), a transmission impedance is represented as “Ro” (Ω), and a capacitance in “OFF” state between the first electrode and the second electrode is represented as “C” (F).
Abstract:
The first movable electrode is flat, but the second movable electrode is deformed into a convex shape. A dielectric layer is placed on the facing surface of the second movable electrode. By adjusting a voltage to be applied between the first movable electrode and the second movable electrode, an arbitrary distance is secured between the two electrodes by the electrostatic attractive force generated between the two electrodes, and a desired electrostatic capacitance is obtained. When the distance between the two electrodes is shortened, first, at the center, a part of the first movable electrode and a part of the second movable electrode come into contact with each other with the dielectric layer between them. Then, the first movable electrode and the dielectric layer (second movable electrode) come into contact with each other successively from the contact part towards the periphery side, and the contact area gradually increases.