Abstract:
A node in a wireless sensor network has a receiver that is at least partially implemented in high temperature superconductor circuitry. In one embodiment, band pass filters of the receiver are implemented in high temperature superconducting circuitry. In one embodiment, a cryo-cooler is coupled to a passage for providing coolant to the receiver such that the receiver is cooled at or below the superconducting temperature of its circuit elements.
Abstract:
Wireless configuration tools for communicating with and configuring wireless device systems. An illustrative tool makes use of a software defined radio (SDR) to communicate in multiple formats, modes, or frequencies, with multiple wireless device systems that may otherwise be incompatible. In some embodiments, the tool determines what type and how many wireless systems are to be configured prior to configuration of any of the systems. The tool may then adjust how each system is configured to reduce intra-system as well as inter-system interference. Methods for performing such functions are also included.
Abstract:
Wireless communications methods and systems. Metrics for measuring performance of a wireless system are generated and compared to metrics generated with an idealized simulation of the system. If the actual system performance falls below a predetermined level, the system may be reconfigured to improve performance using a centralized or decentralized method for such configuration.
Abstract:
A system for controlling the HVAC system of a building to reduce overall electrical costs is disclosed. The system develops an energy usage and storage strategy which is a function predicted ambient temperatures, predicted building load requirements and the power company's rate structure.
Abstract:
A wireless communications system comprising a number of node devices and a base station, and having a routing calculator, wherein the system is operating with a first routing map, the routing calculator gathers data relating to communications between node devices and determines whether route improvement is indicated and, if so, the routing calculator generates an improved routing solution, and instructions are relayed via the first routing map to the node devices for implementing a new routing map generated from the optimized routing solution. Also, a method of operating a wireless communication system, including a base station and a number of node devices the method comprising determining whether system improvement is indicated, if so, generating an improved system configuration, distributing data related to the improved system configuration to the node devices, and replacing the current communication configuration with the improved system configuration.
Abstract:
Monitoring systems and methods for monitoring one or more parameters within process equipment are disclosed. A monitoring system for wirelessly monitoring the process equipment can include a number of wireless sensors disposed within a fluid or gas process stream for monitoring various aspects of the fluid or gas medium such as temperature or pressure. Each of the wireless sensors can include a transmitter that can be used to wirelessly transmit sensor signals to a receiver in communication with a central monitoring unit. The wireless sensors can be placed directly within the fluid or gas medium, allowing accurate measurements to be taken within the process stream.
Abstract:
The method of making the tool, for process system identification that is based on the general purpose learning capabilities of neural networks. The method can be used for a wide variety of system identification problems with little or no analytic effort. A neural network is trained using a process model to approximate a function which relates process input and output data to process parameter values. Once trained, the network can be used as a system identification tool. In principle, this approach can be used for linear or nonlinear processes, for open or closed loop identification, and for identifying any or all process parameters.
Abstract:
The present invention pertains to the installation and positioning of the receivers of a wireless tracking system. In such a system, a wireless beaconing device transmits a signal that can be detected by a plurality of wireless receivers positioned at various known locations. Each wireless receiver records information derived from the signal from which it can make an estimate of the distance or relative position of the beaconing device. A controller correlates the information received from the multiple receivers and uses it to estimate the location of the individual. In such systems, the accuracy of the estimated position of the beaconing device depends on the accuracy to which the positions of the receivers are known. A technique is disclosed in which an installer carries a tracking device that can track the person's position and/or movements. The installer starts at a base location and resets the tracking device to cause the tracking device to record this position as the base position. The installer then walks to the location where the first receiving device will be installed while the tracking device tracks his or her movement or position. At the first installation location, the installer causes the tracking device to record this position as the position of the first receiver installed. The process is repeated for each receiver to be installed.
Abstract:
A system for self-calibration and self-tuning of sensors. The sensors may be calibrated statically and dynamically. The calibration may be automatic. Static calibration may be performed via a slope seeking loop. Dynamic calibration may be performed with both the slope seeking loop and a variation of the slope seeking set point.
Abstract:
A system for predicting portions of the spectrum to be available for communications. Data of spectrum usage over time and availability may be obtained. An analysis of the data may be made and then a prediction may be inferred as to the present and future availability of various portions of the spectrum for use. The system may increase the usability of the spectrum.