摘要:
Described herein are embodiments of a first resonator with a quality factor, Q1, greater than 100, coupled to an energy source, generating an oscillating near field region, and a second resonator, with a quality factor, Q2, greater than 100, optionally coupled to an energy drain, and moving freely within the near field region of the first resonator. The first resonator and the second resonator may be coupled to transfer electromagnetic energy from said first resonator to said second resonator as the second resonator moves freely within the near field region.
摘要:
In embodiments of the present invention improved capabilities are described for a method and system comprising a first resonator coupled to an energy source generating a field having magnetic material, and a second resonator located a variable distance from the source resonator having magnetic material and not connected by any wire or shared magnetic material to the first resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator, and where the field of at least one of the source resonator and the second resonator is shaped using magnetic materials to increase the coupling factor among the resonators.
摘要:
Described herein are improved configurations for a wireless power transfer. A power source for driving a resonator includes a switching amplifier. The duty cycle of the switching amplifier may be adjusted as well as optionally inductors and/or capacitors of the circuit to improve the efficiency of power transfer from the power source to the resonators when the parameters of the resonant load change.
摘要:
There is provided a structure for supporting propagation of surface plasmon polaritons. The structure includes a plasmonic material region and a dielectric material region, disposed adjacent to a selected surface of the plasmonic material region. At least one of the plasmonic material region and the dielectric material region have a dielectric permittivity distribution that is specified as a function of depth through the corresponding material region. This dielectric permittivity distribution is selected to impose prespecified group velocities, vgj, on a dispersion relation for a surface polaritonic mode of the structure for at least one of a corresponding set of prespecified frequencies, ωj, and corresponding set of prespecified wavevectors, where j=1 to N.
摘要:
In embodiments of the present invention improved capabilities are described for a method and system comprising a source resonator optionally coupled to an energy source and a second resonator located a distance from the source resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator and where a loss inducing object is positioned to minimize loss in at least one resonator.
摘要:
Described herein are embodiments of a source high-Q resonator, optionally coupled to an energy source, and a second high-Q resonator, optionally coupled to an energy drain that may be located a variable distance from the source resonator. The source resonator and the second resonator may be coupled to transfer electromagnetic energy from said source resonator to said second resonator over a distance D that is smaller than each of the resonant wavelengths λ1 and λ2 corresponding to the resonant frequencies ω1 and ω2, respectively.
摘要:
Described herein are embodiments of a source high-Q resonator optionally coupled to an energy source, and a second high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. The source resonator and the second resonator may be coupled to provide κ/sqrt(Γ1Γ2)>0.2 via near-field wireless energy transfer among the source resonator and the second resonator.
摘要:
A method includes providing a source resonator including a first conductive loop in parallel with a first capacitive element and in series with a first adjustable element the source resonator having a source target impedance, providing a plurality of device resonators each including a conductive loop and having a device target impedance, connecting, for each of the plurality of device resonators, a resistor corresponding to the device target impedance in series with the conductive loop of each of the plurality of device resonators, connecting a network analyzer in series with the first conductive loop and adjusting at least one of the first capacitive element and the first adjustable element until a measured impedance of the source resonator is within a predetermined range of the source target impedance.
摘要:
A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with a movable lighting unit, the load adapted to provide electrical energy to the lighting unit, a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
摘要:
A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes, a load associated with a sensor and configured to power a sensor, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.