Abstract:
A coated conductor is provided with improved electrical connection between the conductive layers such as the high temperature superconductor layer and a metal protection layer applied onto the high temperature superconductor layer and the substrate. A method includes obtaining such electrical connection, in particular, creating a coated conductor wherein the substrate is a core covered with the layers all around its periphery.
Abstract:
A method for laying a superconductor cable having a superconductive cable core and a cryostat enclosing the superconductive cable core, with the superconductive cable core being arranged freely mobile in the cryostat. The method includes cooling the superconductive cable core to the operating temperature after laying the superconductor cable, shortening the superconductive cable core relative to the cryostat, fixing the superconductive cable core at its ends; and mounting terminations on the ends of the cable core.
Abstract:
A method is provided for producing a superconductive electrical conductor (7) in which a layer of an yttrium-barium-copper oxide (YBCO) is applied as a superconductive material onto a textured metal base directly or after prior application of a buffer layer, and is subjected to a heat treatment. To this end an interlayer of a metallic material which is compatible with the crystal structure of YBCO, or with the structure of a buffer layer suitable for the application of YBCO, is initially applied all around onto an elongate metal support (1). The support (1) provided with the interlayer is subsequently processed so that predetermined texturing is imparted to the interlayer as a metal base for the layer of YBCO material or for the buffer layer. The layer of superconductive YBCO material is then applied all around, directly onto the textured interlayer or onto the buffer layer previously applied thereon, and the heat treatment is finally carried out.
Abstract:
A method and system for providing protection for a superconducting electrical cable located in a utility power network includes detecting a fault current on the superconducting electric cable, determining the cumulative total energy dissipated in the superconducting electrical cable from the fault current and at least one prior fault current over a predetermined time period, and determining whether to disconnect the superconducting electrical cable from the utility power network on the basis of the cumulative total energy dissipated.
Abstract:
A coated conductor with a substantially round cross section has a high temperature superconductor layer which is sandwiched between an inner substrate layer and an outer substrate layer to place the high temperature superconductor layer in the region of neutral strain axis.
Abstract:
A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).
Abstract:
A method for laying a superconductor cable having a superconductive cable core and a cryostat enclosing the superconductive cable core, with the superconductive cable core being arranged freely mobile in the cryostat. The method includes cooling the superconductive cable core to the operating temperature after laying the superconductor cable, shortening the superconductive cable core relative to the cryostat, fixing the superconductive cable core at its ends; and mounting terminations on the ends of the cable core.
Abstract:
Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).
Abstract:
A system is provided having a superconductive cable (KA) which consists of a superconductive inner conductor (1), a screen arranged concentrically therewith and a dielectric applied (3) between the inner conductor and the screen. The screen (S) is constructed from a superconductive part (4) and a part (5) consisting of an electrically highly conductive material enclosing the latter, and in which the screen is enclosed with the inclusion of an intermediate space (9), used for feeding a liquid refrigerant through, by a cryostat (KR) which consists of two stainless steel tubes (6, 7) extending concentrically with one another and separated from one another by an intermediate space (8). In order to protect against abrasion of metallic parts, the surface of the screen (S) of the cable (KA), which is enclosed by the cryostat (KR), and/or of the cryostat (KR) is provided all around on its inner surface with a liner layer (10) made of an abrasion-resistant material with a lower friction coefficient compared with steel, which, when it encloses the screen (S) of the cable (KA), is permeable for the refrigerant.
Abstract:
A conductor for transmitting electrical power having a cylindrical core (1) clad with a strip of metallic material (2), possibly comprising a superconductor, placed, in the shape of a tube, longitudinally around said core (I), its longitudinal edges being welded to each other along a weld seam (3). The core (1) has a slot (4, 4′) placed under said weld seam (3).