Abstract:
A solid oxide fuel cell is disclosed. The fuel cell includes a porous anode, formed of finely-dispersed nickel/stabilized-zirconia powder particles. The particles have an average diameter of less than about 300 nanometers. They are also characterized by a tri-phase length of greater than about 50 μm/μm3. A solid oxide fuel cell stack is also described, along with a method of forming an anode for a solid oxide fuel cell. The method includes the step of using a spray-agglomerated, nickel oxide/stabilized-zirconia powder to form the anode.
Abstract:
A photovoltaic device is presented. The device includes a first semiconductor layer disposed on a second semiconductor layer. The first semiconductor layer includes a compound having a metal species, sulfur, and oxygen. The metal species may include zinc, magnesium, tin, indium, or a combination thereof. Method for making a photovoltaic device is also presented.
Abstract:
Embodiments of the present invention include a method. The method includes producing a first vapor from a solid source material, reacting hydrogen telluride to form a second vapor comprising tellurium, and depositing on a support a coating material comprising tellurium within a deposition environment, the deposition environment comprising the first vapor and the second vapor. Another embodiment is a system. The system includes a deposition chamber disposed to contain a deposition environment in fluid communication with a support; a solid source material disposed in fluid communication with the deposition chamber; and a hydrogen telluride source in fluid communication in fluid communication with the deposition chamber.
Abstract:
A photovoltaic device includes an absorber layer comprising a material comprising cadmium and tellurium. The photovoltaic device further includes a p+-type semiconductor layer and an interlayer interposed between the absorber layer and the p+-type semiconductor layer. The interlayer comprises manganese. The photovoltaic device may be manufactured as a substrate-based device or as a superstrate base device.
Abstract:
One aspect of the present invention includes method of making a photovoltaic device. The method includes disposing an absorber layer on a window layer, wherein the absorber layer includes a first region and a second region. The method includes disposing the first region adjacent to the window layer in a first environment including oxygen at a first partial pressure; and disposing the second region on the first region in a second environment including oxygen at a second partial pressure, wherein the first partial pressure is greater than the second partial pressure. One aspect of the present invention includes a photovoltaic device.
Abstract:
In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a window layer and an absorber layer disposed on the window layer, wherein the absorber layer includes a first region and a second region, the first region disposed adjacent to the window layer. The absorber layer further includes a first additive and a second additive, wherein a concentration of the first additive in the first region is greater than a concentration of the first additive in the second region, and wherein a concentration of the second additive in the second region is greater than a concentration of the second additive in the first region. Method of making a photovoltaic device is also provided.
Abstract:
In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a transparent layer; a first porous layer disposed on the transparent layer, wherein the first porous layer comprises a plurality of pores extending through a thickness of the first porous layer; a first semiconductor material disposed in the plurality of pores to form a patterned first semiconductor layer; and a second semiconductor layer disposed on the first porous layer and the patterned first semiconductor layer, wherein the patterned first semiconductor layer is substantially transparent. Method of making a photovoltaic device is also provided.
Abstract:
A photovoltaic device having a down-converting layer disposed on the device, is presented. The down-converting layer have a graded refractive index, wherein a value of refractive index at a first surface of the down-converting layer varies from a value of refractive index at a second surface of the layer. A photovoltaic module having a plurality of such photovoltaic devices is also presented.
Abstract:
A photovoltaic device includes a substrate having at least two surfaces and a multilayered film disposed on at least a portion of at least one surface of the substrate. Elongated nanostructures are disposed on the multilayered film. The device incorporates a top layer of the multilayered film contacting the elongated nanostructures that is a tunnel junction. The device has at least one layer deposited over the elongated nanostructures defining a portion of a photoactive junction. A solar panel includes at least one photovoltaic device. The solar panel isolates each such devices from its surrounding atmospheric environment and permits the generation of electrical power.
Abstract:
One exemplary embodiment of a semiconductor structure can include: (a) a semiconductor substrate of one conductivity type, having a front surface and a back surface and including at least one via through the semiconductor substrate, where the at least one via is filled with a conductive material; and (b) a semiconductor layer disposed on at least a portion of the front or back surface of the semiconductor substrate, where the semiconductor layer is compositionally graded through its depth with one or more selected dopants, and the conductive material is configured to electrically couple the semiconductor layer to at least one front contact disposed on or over the surface of the substrate.