Abstract:
A head-mounted display (HMD) system includes an HMD device wearable upon a head of a user, and a peripheral device that is dockable with the HMD device. The peripheral device comprises a plurality of light source elements disposed along a perimeter of a face of the peripheral device and a peripheral electronic control system. The peripheral electronic control system is configured to form an optically detectable light pattern with the plurality of light source elements by controlling each of the light source elements. The HMD device is configured to detect the optically detectable light pattern with a camera and to display an augmented reality (AR) content based on the identified optically detectable light pattern.
Abstract:
The present invention relates to materials containing polyreaction products cured by UV radiation in presence of at least one UV initiator and/or electron radiation and/or IR radiation, planar structures based on renewable raw materials which contain these materials particularly in the coating layer, and methods of the production of said planar structures.
Abstract:
A method for reducing motion-to-photon latency for hand tracking is described. In one aspect, a method includes accessing a first frame from a camera of an Augmented Reality (AR) device, tracking a first image of a hand in the first frame, rendering virtual content based on the tracking of the first image of the hand in the first frame, accessing a second frame from the camera before the rendering of the virtual content is completed, the second frame immediately following the first frame, tracking, using the computer vision engine of the AR device, a second image of the hand in the second frame, generating an annotation based on tracking the second image of the hand in the second frame, forming an annotated virtual content based on the annotation and the virtual content, and displaying the annotated virtual content in a display of the AR device.
Abstract:
The invention relates to a method for controlling an ultrasonic unit f an ultrasonic cleaning system with at least one control unit, one generator unit and one hand-held unit containing the ultrasonic unit and one switching module provided for starting the ultrasonic unit, wherein mechanical oscillations can be generated via the ultrasonic unit and transmitted to an instrument that is mechanically connected to the ultrasonic unit. In a preferred embodiment, the resonant frequency required for operation of the ultrasonic unit in resonance is determined by a control routine executed in the control unit, and a control signal (ss) based on the determined resonant frequency is generated in the generator unit and is sent to the ultrasonic unit for operation of the ultrasonic unit in resonance.
Abstract:
The invention relates to a method for controlling an ultrasonic unit f an ultrasonic cleaning system with at least one control unit, one generator unit and one hand-held unit containing the ultrasonic unit and one switching module provided for starting the ultrasonic unit, wherein mechanical oscillations can be generated via the ultrasonic unit and transmitted to an instrument that is mechanically connected to the ultrasonic unit. In a preferred embodiment, the resonant frequency required for operation of the ultrasonic unit in resonance is determined by a control routine executed in the control unit, and a control signal (ss) based on the determined resonant frequency is generated in the generator unit and is sent to the ultrasonic unit for operation of the ultrasonic unit in resonance.
Abstract:
A drive apparatus has at least two electric motors. There is also a central control common to all motors which lie in series in a closed-circuit energy supply. Each motor has an individual control unit which can be turned on and off from the central control via a control line by an address. Each motor also contains a short-circuit device lying in parallel with its connecting terminals.