Abstract:
The invention discloses an electrical heating hookah, comprising an electrical heating atomization component, a battery component, and a filtration component; the electrical heating atomization component is used to heat and atomize prepared opium paste or e-liquid to generate gas; the battery component is used to provide electrical energy to the atomization component; the filtration component comprises a liquid storage bottle, a pipe and a suction nozzle; the pipe is communicated with the atomization component and the liquid storage bottle, and the suction nozzle is communicated with the liquid storage bottle; the gas enters the liquid storage bottle through the pipe and is filtered and then discharged through the suction nozzle.
Abstract:
An area of research in the field of bioinformatics deals with the identification of similarities within one, or between two DNA sequences. Current techniques are quite slow and many matches are missed. The invention provides a faster and more sensitive solution, by using “optimized spaced seeds” to perform these biological sequence homology searches. Various techniques are shown for identifying seeds which are optimized to improve the sensitivity or speed of the searching. In the preferred embodiment, optimized spaced seeds are determined by the parameters of the search and independent of the actual databases being searched (for example, using the length and weight of the spaced seed, as well as the probability of a hit in a similar region). Thus, these optimized seeds can be stored in libraries which are accessed as required.
Abstract:
Novel phosphorescent metal complexes containing 2-phenylisoquinoline ligands with at least two substituents on the isoquinoline ring are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
Abstract:
Compounds that have agonist activity at one or more of the S1P receptors are provided. The compounds are sphingosine analogs that, after phosphorylation, can behave as agonists at S1P receptors.
Abstract:
Novel materials are provided, having a single phenyl or a chain of phenyls where there is a nitrogen atom on each end of the single phenyl or chain of phenyls. The nitrogen atom may be further substituted with particular thiophene, benzothiophene, and triphenylene groups. Organic light-emitting devices are also provided, where the novel materials are used as a hole transport material in the device. Combinations of the hole transport material with specific host materials are also provided.
Abstract:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include a molecule of Formula I wherein an alkyl substituent at position R′5 results in high efficiency and operational stability in the organic light emitting device. Additionally or alternatively, the emissive layer may include a metal-ligand complex in which the ligand is an aryl or alkyl substituted phenylpyridine ligand.
Abstract:
Devices containing a particular combination of organic compounds are provided. In particular, the devices contain twisted aryl compounds having extended conjugation (i.e., the twisted aryl is substituted with an additional aryl group) in combination with dibenzothiophene or dibenzofuran containing host materials. The organic light emitting devices may provide improved stability color, lifetime and manufacturing. Compounds containing a twisted aryl having extended conjugation are also provided.
Abstract:
Novel organic compounds comprising ligands containing a boron-nitrogen heterocycle are provided. In particular, the compound is a metal complex comprising a ligand containing an azaborine. The compounds may be used in organic light emitting devices to provide devices having improved photophysical and electronic properties.
Abstract:
Heteroleptic compounds containing phenylpyridine and phenylbenzimidazole are provided. The compounds may be used in organic light emitting devices, particularly as emissive dopants in the emissive layer of such devices.