Abstract:
An ion source using a field emission device is provided. The field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a first dielectric layer, a cathode electrode, and an electron emission layer. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode electrode is located apart from the electron pulling electrode by the first dielectric layer. The cathode electrode has a surface oriented to the electron pulling electrode and defines a first opening as an electron output portion. The electron emission layer is located on the surface of the cathode electrode and oriented to the electron pulling electrode.
Abstract:
A field emission cathode device includes a cathode substrate, a gate electrode, a first dielectric layer, a cathode electrode, and an electron emission layer. The gate electrode is located on a surface of the cathode substrate. The first dielectric layer is located on a surface of the gate electrode and defines a first opening to expose part of the gate electrode. The cathode electrode is spaced from the gate electrode through the first dielectric layer defining a second opening in alignment with the first opening. A field emission display using the field emission cathode device is also related.
Abstract:
A vacuum packaging system for packaging a vacuum apparatus includes a first accommodating room, a second container, a vacuum room, a first hatch, a second hatch, a delivery apparatus, a discharge device, and a heating apparatus. The delivery apparatus transports the vacuum apparatus from the first accommodating room to the vacuum room to the second accommodating room. The discharge device discharges a sealing element to seal an exhaust through hole of the vacuum apparatus. The heating apparatus is mounted on the inner wall of the vacuum room between the second hatch and the transport pipeline to heat and soften the sealing element.
Abstract:
A field emission cathode structure includes a dielectric layer, a field emission unit, a grid electrode, and a conductive layer. The dielectric layer is positioned on the insulating substrate and defines a cavity. A field emission unit is attached on the cathode electrode and received in the cavity of the dielectric layer. The field emission unit is electrically attached to the cathode electrode. The grid electrode is located on the dielectric layer, and electrons emitted from the field emission unit emit through the grid electrode. The conductive layer is electrically attached to the grid electrode and insulated from the field emission unit. A field emission display device using the above-mentioned field emission cathode structure is also provided.
Abstract:
An exemplary field emission cathode includes an electrically conductive layer and an electron-emitting member formed thereon. The electron-emitting member includes an electron-emitting material configured for emitting electrons and a getter material configured for collecting outgassed materials. An exemplary planar light source includes an anode and a cathode spaced apart from the anode. The anode includes a first electrically conductive layer and a fluorescent layer formed on an inner surface of the first electrically conductive layer. The cathode includes a second electrically conductive layer and an electron-emitting member formed on an inner surface of the second electrically conductive layer which faces toward the fluorescent layer. The electron-emitting member includes an electron-emitting material and a getter material.
Abstract:
A flat panel display (7) generally includes a front substrate (79) and a rear substrate (70) opposite thereto. The front substrate is formed with an anode (78). The rear substrate is formed with a cathode (71) facing the anode. Several sidewalls (72) are interposed between the front substrate and the rear substrate. A plurality of getter devices (82) are arranged on the front substrate. Thereby, a chamber between the front substrate and the rear substrate is maintained as a low-pressure vacuum. Each of the getter devices includes a base (820), a getter layer (822) comprised of non-evaporable getter material formed thereon, and securing wires (84) arranged on the base.
Abstract:
An anode structure (110) for a field emission display (100) includes a front substrate (111), an anode electrode (112) formed on the front substrate, a phosphor layer (113) formed on the anode electrode and a getter material (114). The phosphor layer has a plurality of separated phosphor strips (1131, 1132, 1133) each configured for emitting light of a respective single color. The getter material is arranged between adjacent phosphor strips thereof.
Abstract:
A flat panel display (7) generally includes a front substrate (79) and a rear substrate (70) opposite thereto. The front substrate is formed with an anode (78). The rear substrate is formed with a cathode (71) facing the anode. Several sidewalls (72) are interposed between the front substrate and the rear substrate. A plurality of getter devices (82) are arranged on the front substrate. Thereby, a chamber between the front substrate and the rear substrate is maintained as a low-pressure vacuum. Each of the getter devices includes a base (820), a getter layer (822) comprised of non-evaporable getter material formed thereon, and securing wires (84) arranged on the base.
Abstract:
A reference leak includes a leak layer formed of one of a metallic material, a glass material, and a ceramic material. The metallic material is selected from the group consisting of copper, nickel, and molybdenum. The leak layer comprises a number of substantially parallel leak through holes defined therein. The leak through holes may be cylindrical holes or polyhedrical holes. A length of each of the leak through holes is preferably not less than 20 times a diameter thereof. A diameter of each of the leak through holes is generally in the range from 10 nm to 500 nm. A length of each of the leak through holes is generally in the range from 100 nm to 100 μm. A leak rate of the reference leak is in the range from 10−8 to 10−15 tor×l/s. The leak through holes have substantially same length and diameter.
Abstract:
A method for making a reference leak includes the steps of: (a) preparing a substrate; (b) forming a patterned catalyst layer on the substrate, the patterned catalyst layer comprising one or more catalyst blocks; (c) forming one or more elongate nano-structures extending from the corresponding catalyst blocks by a chemical vapor deposition method; (d) forming a leak layer of one of a metallic material, a glass material, and a ceramic material on the substrate with the one or more elongate nano-structures partly or completely embedded therein; and (e) removing the one or more elongate nano-structures and the substrate to obtain a reference leak with one or more leak holes defined therein.