Abstract:
A liquid crystal display device and a method for manufacturing the same are disclosed. The liquid crystal display device comprises first and second substrates facing each other; a transparent conductive film formed on one surface of the first substrate, absorbing charges of electro static discharge (ESD); a black matrix including a first black matrix formed on a corner of the other surface of the first substrate and end portions spaced apart from one end of the first black matrix at a predetermined interval for insulation; a ground electrode formed on one surface of the second substrate; and a connection portion connecting the transparent conductive film with the ground electrode, and extending over the end portions.
Abstract:
Disclosed herein is a catalyst, including, in one example: a carrier, a polymer electrolyte multilayer film formed on the carrier, and metal particles dispersed in the polymer electrolyte multilayer film. The catalyst can be easily prepared, and can be used to produce hydrogen peroxide in high yield in the presence of a reaction solvent including no acid promoter.
Abstract:
A liquid crystal display device and a method for manufacturing the same are disclosed. The liquid crystal display device comprises first and second substrates facing each other; a transparent conductive film formed on one surface of the first substrate, absorbing charges of electro static discharge (ESD); a black matrix including a first black matrix formed on a corner of the other surface of the first substrate and end portions spaced apart from one end of the first black matrix at a predetermined interval for insulation; a ground electrode formed on one surface of the second substrate; and a connection portion connecting the transparent conductive film with the ground electrode, and extending over the end portions.
Abstract:
The present invention relates to a catalyst having surface-modified metal nanoparticles immobilized in a stationary phase in which a polymer electrolyte membrane is formed, and a preparation method thereof. The catalyst of the present invention may be used in a process for producing hydrogen peroxide by direct synthesis from oxygen and hydrogen.
Abstract:
The present invention relates to a catalyst having surface-modified metal nanoparticles immobilized in a stationary phase in which a polymer electrolyte membrane is formed, and a preparation method thereof. The catalyst of the present invention may be used in a process for producing hydrogen peroxide by direct synthesis from oxygen and hydrogen.
Abstract:
Disclosed herein is a catalyst, including, in one example: a carrier, a polymer electrolyte multilayer film formed on the carrier, and metal particles dispersed in the polymer electrolyte multilayer film. The catalyst can be easily prepared, and can be used to produce hydrogen peroxide in high yield in the presence of a reaction solvent including no acid promoter.
Abstract:
Disclosed herein is a catalyst, including, in one example: a carrier, a polymer electrolyte multilayer film formed on the carrier, and metal particles dispersed in the polymer electrolyte multilayer film. The catalyst can be easily prepared, and can be used to produce hydrogen peroxide in high yield in the presence of a reaction solvent including no acid promoter.