Abstract:
A sensor network has a plurality of wireless sensors which transmit to an intermediate receiving device which relays data to a central server. A method is provided for receiving data packets at the intermediate receiving device from a plurality of the transmitting devices. Data packets are sensed on a communication medium at the receiving device and the total traffic intensity of data packets from the transmitting devices is estimated. A detection threshold for data packets is provided and adapted as a function of the total intensity. The receiving device receives data packets with a signal strength above the current detection threshold.
Abstract:
A resource allocation framework for wireless/wired networks is described. In an embodiment, methods of end host based traffic management are described which operate separately from the underlying access control protocol within the network (e.g. wireless MAC protocol or TCP). The rate limits for each flow are set based on per-flow weights, which may be user specified, and based on an estimate of the utilization of the shared resource and the rate limits are adjusted periodically so that the resource is not underutilized or saturated. Some embodiments compute a virtual capacity of the resource which is adjusted to optimize the value of the utilization and then the virtual capacity is shared between flows according to the per-flow weights. Methods for estimating the utilization of a wireless network and the capacity of a broadband access link are also described.
Abstract:
Wireless protocols in the unlicensed spectrum are developed for different requirements in terms of transmit range and power, which makes it difficult for multiple nodes having disparate transmit ranges to coexist in the same unlicensed spectrum. A short-range wireless node uses adaptive preambles to signal presence to long-range wireless nodes outside of its transmit range. In addition, a long-range wireless node detects an adapter preamble and backs-off transmissions for reservation period dedicated to short-range nodes.
Abstract:
A sensor network has a plurality of wireless sensors which transmit to an intermediate receiving device which relays data to a central server. A method is provided for receiving data packets at the intermediate receiving device from a plurality of the transmitting devices. Data packets are sensed on a communication medium at the receiving device and the total traffic intensity of data packets from the transmitting devices is estimated. A detection threshold for data packets is provided and adapted as a function of the total intensity. The receiving device receives data packets with a signal strength above the current detection threshold.
Abstract:
A sensor network has a plurality of wireless sensors which transmit to an intermediate receiving device which relays data to a central server. A method is provided for receiving data packets at the intermediate receiving device from a plurality of the transmitting devices. Data packets are sensed on a communication medium at the receiving device and the total traffic intensity of data packets from the transmitting devices is estimated. A detection threshold for data packets is provided and adapted as a function of the total intensity. The receiving device receives data packets with a signal strength above the current detection threshold.
Abstract:
The claimed subject matter provides a method for wireless communications. The method includes transmitting, by a first node in a wireless network, a first preamble. The method also includes detecting, in parallel with transmitting the first preamble, a transmission of a second preamble. A second node in the wireless network transmits the second preamble. Additionally, the method includes determining a later start between the transmission of the first preamble and the transmission of the second preamble. The method further includes terminating transmission of the first preamble the determining indicates that the transmission of the first preamble started after the transmission of the second preamble.
Abstract:
A resource allocation framework for wireless/wired networks is described. In an embodiment, methods of end host based traffic management are described which operate separately from the underlying access control protocol within the network (e.g. wireless MAC protocol or TCP). The rate limits for each flow are set based on per-flow weights, which may be user specified, and based on an estimate of the utilization of the shared resource and the rate limits are adjusted periodically so that the resource is not underutilized or saturated. Some embodiments compute a virtual capacity of the resource which is adjusted to optimize the value of the utilization and then the virtual capacity is shared between flows according to the per-flow weights. Methods for estimating the utilization of a wireless network and the capacity of a broadband access link are also described.
Abstract:
Full-duplex wireless communication is described. In an embodiment, a transceiver device having a transmitter circuit and a receiver circuit receives a data packet sent over a shared communication medium. In the embodiment, the transceiver reads the header of the data packet and starts transmitting an output signal on the same shared communication medium. Embodiments are described in which, whilst the transmission of the output signal is ongoing, the transceiver receives an impaired data signal which is made up of the payload of the data packet and interference from the output signal. In the embodiment, a cancellation signal is derived from the output signal, and this is combined with the impaired data signal to remove the interference and recover the payload of the data packet.
Abstract:
A communication device cognitively monitors interference signals across a communication band so that adaptations for physical and medium access control (MAC) of data packet transmissions are appropriate for a particular interference signal. Characteristics of an interference signal of interest (e.g., bandwidth, power and/or duration relative to an average data packet transmitted over a communication channel of the communication device) are sensed for an appropriate adaptation (e.g., forward error correction, modulation technique, back off, request to send/clear to send protocol, etc.). Patterns for known types of interference sources can be compared so that when recognized an associated adaptation can be used.
Abstract:
Count tracking in distributed environments is described, for example, as in data centers where many sites receive data and a coordinator node estimates a sum of the data received across the sites. Count tracking may be used in database applications, search engines, social networking applications and others. In various embodiments sites and a coordinator node work together to implement a process for summing data received at sites, where the sum takes into account both increments and decrements. In examples, a site decides whether to notify the coordinator node of a new data item according to a sampling probability that is related to an estimate of the current global sum of the data input across sites. In some examples a multi-mode algorithm is implemented which increases or decreases communication between the sites and the coordinator node according to behavior of the estimated global sum such that communications costs are optimized.