摘要:
A circuit can include a pair of switching elements that have terminals electrically connected to terminals of a power supply and have other terminals electrically connected to an output terminal. The circuit can include rectifying elements and one or more charge storage elements. The circuit may be used as a Buck converter. The rectifying element(s) and charge storage element(s) may help to reduce ringing at an output terminal of the circuit during normal operation and reduce the likelihood of exceeding a breakdown voltage between current-carrying electrodes of a switching element within the circuit during a switching operation.
摘要:
A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.
摘要:
A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.
摘要:
A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.
摘要:
A process is described for producing isolated semiconductor devices in a common substrate which have self-aligned and pre-located isolation walls, buried layers, and channel-stops. The isolation walls are formed from a stacked arrangement of a dielectric region and a polycrystalline semiconductor region, above a doped channel-stop region which acts as a field guard. A single mask layer determines the location and spacing of the buried portions of the isolation walls, the channel-stops, and the buried layers.
摘要:
A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.
摘要:
A process is described for producing isolated semiconductor devices in a common substrate which have self-aligned and pre-located isolation walls, buried layers, and channel-stops. The isolation walls are formed from a stacked arrangement of a dielectric region and a non-single crystal semiconductor region, above a doped channel-stop region. A single mask layer determines the location and spacing of the non-single crystal portion of the isolation walls, the channel-stops, and the buried layers.