Abstract:
The present invention relates to a multi-piston pump comprising a housing, a first pump unit having a plurality of piston pumps for the pressure supply of a first pressure circuit, a second pump unit having a plurality of piston pumps for the pressure supply of a second pressure circuit, a drive and an eccentric unit having a first eccentric and a second eccentric, wherein the first and the second eccentrics drive the plurality of piston pumps, and wherein the first and second pump units comprise in each case at least one piston pump which can be driven by the first eccentric and one piston pump which can be driven by the second eccentric. In that in each case, one piston pump which is driven by the first eccentric is arranged parallel to a piston pump which is driven by the second eccentric.
Abstract:
An accumulator comprises a cylinder formed with a substantially closed chamber and a piston formed with a small-diameter central region and a pair of large-diameter end regions flanking the central region and each formed with an outwardly open annular groove. This piston subdivides the chamber into a gas compartment at one of the end regions, a liquid compartment at the other end region, and an annular charging compartment surrounding the central region. The piston is displaceable in the cylinder to oppositely vary the volumes of the gas and liquid compartments. Respective gas and liquid seals are engaged in the grooves between the gas- and liquid-compartment end regions of the piston and the cylinder and are both constructed to inhibit fluid flow from the respective gas and liquid compartments into the charging compartment. The liquid seal is also constructed to inhibit fluid flow from the charging compartment into the liquid compartment but the gas seal is constructed to permit fluid flow from the charging compartment past itself into the gas compartment. A passage is formed in the cylinder opening directly into the charging compartment for introducing a gas under pressure into same and for thereby pressurizing the charging and gas compartments by flowing the gas past the gas seal into the gas compartment.
Abstract:
A multipiston pump including a plurality of piston pumps hydraulically combined into at least two pump units are coupled on the intake side, but supply two separate hydraulic circuits of a vehicle brake system with pressure fluid. To reduce brake pedal pulsation the piston pumps are driven in phase-offset fashion.An eccentric unit comprising two spaced-apart cams rotated counter to one another, with the individual piston pumps being located in a number of sectional planes through the pump housing corresponding to the number of cams and locate the connecting conduits for hydraulically coupling the pump units are located in a region of the pump housing defined by the sectional planes.
Abstract:
A multipiston pump including a plurality of piston pumps hydraulically combined into at least two pump units are coupled on the intake side, but supply two separate hydraulic circuits of a vehicle brake system with pressure fluid. To reduce brake pedal pulsation the piston pumps are driven in phase-offset fashion. An eccentric unit comprising two spaced-apart cams rotated counter to one another, with the individual piston pumps being located in a number of sectional planes through the pump housing corresponding to the number of cams and locate the connecting conduits for hydraulically coupling the pump units are located in a region of the pump housing defined by the sectional planes.
Abstract:
An anti-lock device for a hydraulic automobile brake system includes a housing block for receiving an eccentric directional valves, two coaxially oriented pump pistons and first and second storage chambers. So that the housing block can be made narrower, the longitudinal axes (F, G, I, J) are distributed to the corners of a quadrangle. At the same time, the common longitudinal axis (E) of the pump pistons can be located between the longitudinal axes of the storage chambers.
Abstract:
A damper unit in which a structural volume of the unit is reduced. The hydraulic unit includes a damper chamber formed by a stepped bore. A diameter-to-length ratio of the chamber is between 1:3 and 1:12. A closure element of the damper chamber is received with radial pressure in the bore and is retained on the discharge end by an embossed connection. The smaller-diameter portion of the damper chamber bore, when the hydraulic unit is in the position for use, is offset eccentrically upward from the larger-diameter bore portion with an at least approximately horizontally extending bore axis, so that the jackets of both bore portion merge at least approximately in alignment with one another at at least one point. The damper chamber is of slender design and intended to be disposed in a housing block of the hydraulic unit in a way that economizes on installation space and is intended to be simple to vent. The hydraulic unit is intended for use in slip-controlled motor vehicle brake systems.