摘要:
A second photoresist having a second photosensitivity is formed on a substrate. A first photoresist having a first photosensitivity, which is greater than second photosensitivity, is formed on the second photoresist. Preferably, the first photoresist is a gray resist that becomes transparent upon exposure. At least one portion of the first photoresist is lithographically exposed employing a first reticle having a first pattern to form at least one transparent lithographically exposed resist portion, while the second photoresist remains intact. The second photoresist is lithographically exposed employing a second reticle including a second pattern to form a plurality of lithographically exposed shapes in the second photoresist. The plurality of lithographically exposed shapes have a composite pattern which is the derived from the second pattern by limiting the second pattern only within the area of the at least one transparent lithographically exposed resist pattern.
摘要:
Mark and method for integrated circuit fabrication with polarized light lithography. A preferred embodiment comprises a first plurality of elements comprised of a first component type, wherein the first component type has a first polarization, and a second plurality of elements comprised of a second component type, wherein the second component type has a second polarization, wherein the first polarization and the second polarization are orthogonal, wherein adjacent elements are of different component types. The alignment marks can be used in an intensity based or a diffraction based alignment process.
摘要:
In one embodiment, a method of manufacturing a semiconductor device includes using a processor to generate a first three dimensional (3-D) resist profile for a first process condition using an layout mask of a target structure. The method further includes using a processor to generate a second 3-D resist profile for a second process condition using the layout mask. The first process condition includes a plurality of process variables, and the second process condition includes different values of the plurality of process variables than the first process condition. The method includes generating a 3-D process variable (PV) band profile by combining the first 3-D resist profile with the second 3-D resist profile and displaying a 3-D image of the 3-D PV band profile on a display.
摘要:
In one embodiment, a method of manufacturing a semiconductor device includes using a processor to generate a first three dimensional (3-D) resist profile for a first process condition using an layout mask of a target structure. The method further includes using a processor to generate a second 3-D resist profile for a second process condition using the layout mask. The first process condition includes a plurality of process variables, and the second process condition includes different values of the plurality of process variables than the first process condition. The method includes generating a 3-D process variable (PV) band profile by combining the first 3-D resist profile with the second 3-D resist profile and displaying a 3-D image of the 3-D PV band profile on a display.
摘要:
Mark and method for integrated circuit fabrication with polarized light lithography. A preferred embodiment comprises a first plurality of elements comprised of a first component type, wherein the first component type has a first polarization, and a second plurality of elements comprised of a second component type, wherein the second component type has a second polarization, wherein the first polarization and the second polarization are orthogonal, wherein adjacent elements are of different component types. The alignment marks can be used in an intensity based or a diffraction based alignment process.
摘要:
A method of forming an integrated circuit device is disclosed. A polycrystalline silicon layer is formed in direct contact with a dielectric material so that the dielectric material induces a stress in the polycrystalline silicon layer as the polycrystalline silicon layer is formed. A MOS transistor that includes a gate comprising the polycrystalline silicon is then completed.
摘要:
A method for manufacturing a semiconductor device is disclosed including determining a dimension or other physical characteristic of a pattern in a layer of material that is disposed on a workpiece, and etching the layer of material using information that is related to the dimension. A system is also disclosed for manufacturing a semiconductor device including a first etch system configured to etch a layer to define a pattern in the layer, and a second etch system configured to measure a physical characteristic of the pattern, determine an etch control parameter based on the physical characteristic, and etch the layer in accordance with the etch control parameter.
摘要:
Lithography masks and methods of manufacture thereof are disclosed. A preferred embodiment comprises a method of manufacturing a lithography mask. The method includes providing a substrate, forming a first pattern in a first region of the substrate, and forming a second pattern in a second region of the substrate, the second pattern comprising patterns for features oriented differently than patterns for features of the first pattern. The method includes affecting a polarization rotation of light differently in the first region than in the second region of the substrate.
摘要:
Process control systems and methods for semiconductor device manufacturing are disclosed. A plurality of feedback and feed-forward loops are used to accurately control the critical dimension (CD) of features formed on material layers of semiconductor devices. Semiconductor devices with features having substantially the same dimension for each die across the surface of a wafer may be fabricated using the novel process control systems and methods described herein.
摘要:
Semiconductor devices and methods of manufacturing thereof are disclosed. A plurality of features is formed on a workpiece, the plurality of features being located in a first region and a second region of the workpiece. Features in the first region have a first lateral dimension, and features in the second region have a second lateral dimension, wherein the second lateral dimension is greater than the first lateral dimension. The first region is masked, and the second lateral dimension of features in the second region is reduced.