Abstract:
A an organic electroluminescent display device includes an array substrate including a driving thin film transistor in a pixel region on a first substrate; an opposing substrate including an organic electroluminescent diode in the pixel region on a second substrate; an adhesive layer filling a space between the array substrate and the opposing substrate; and a connection spacer to electrically connect the organic electroluminescent diode with the driving thin film transistor.
Abstract:
The present invention further relates to an OLED device, including R, G, B, and W subpixels. Specifically, the OLED device comprises a substrate; a thin film transistor (TFT) active layer disposed on the substrate, comprising a gate electrode, a gate insulating layer, an active layer, an interlayer insulating layer, a source electrode, and a drain electrode; an overcoat layer disposed over the thin film transistor; and a passivation layer disposed between the thin film transistor and the overcoat layer, wherein the passivation layer is absent in a path of a light or wherein the passivation layer is disposed in the path of the light as a single layer comprising silicon nitride.
Abstract:
An organic electro luminescence device is provided. First and second substrates are arranged to face each other. A thin film transistor (TFT) is formed on the first substrate in each sub-pixel. A first electrode is formed on the first substrate and connected to the TFT. An organic electro luminescent layer and a second electrode are formed on the first electrode. A black matrix is disposed below the first electrode.
Abstract:
A an organic electroluminescent display device includes an array substrate including a driving thin film transistor in a pixel region on a first substrate; an opposing substrate including an organic electroluminescent diode in the pixel region on a second substrate; an adhesive layer filling a space between the array substrate and the opposing substrate; and a connection spacer to electrically connect the organic electroluminescent diode with the driving thin film transistor.
Abstract:
An organic electroluminescent device includes a transparent substrate having at least first, second and third pixels defined thereon, a first longitudinal bank located between the first pixel and the second pixel, a second longitudinal bank located between the second pixel and the third pixel, and an organic luminous polymer layer over the substrate and between the first longitudinal bank and the second longitudinal bank. The device also includes a transverse bank extending between the first longitudinal bank and the second longitudinal bank. Sidewalls of the longitudinal banks and the transverse bank slope outwardly. The transverse bank has a height which is less than a height of the longitudinal banks. A method of forming the device utilizes nozzle coating or ink-jet coating, and a specially configured mask for producing the banks of differing heights.
Abstract:
Provided is a light emitting device. Particularly, the light emitting device comprises a threshold voltage compensator. The threshold voltage compensator is connected between a gate and a drain of the driving TFT and has a gate connected to a second scan line to temporarily store at the storage capacitor a gate voltage reflecting a threshold voltage of the driving TFT in response to a second scan signal supplied by a second scan line and to transmit the data signal regardless of variations in the threshold voltage of the driving TFT when the output current is supplied to the light emitting diode.
Abstract:
A liquid crystal display device according to the present invention comprises first and second substrates, a gate bus line and a transparent data bus line defining unit pixel region, a common line parallel to a gate bus line in the pixel region, a TFT at a crossing of a data bus line and the gate bus lines in the pixel region, a common electrode and a storage capacitor line in the pixel region, a gate insulator having holes on the gate bus line, the common electrode, and the storage capacitor lines, a passivation layer having holes on the gate insulator, a first alignment layer with a fixed alignment direction on the passivation layer, and a liquid crystal layer between the first and second substrates.
Abstract:
An active matrix organic electroluminescent device includes a substrate, a gate line on the substrate, a data line on the substrate, the data line crossing the gate line to define a pixel region, a first switching thin film transistor connected to the gate line and the data line, a first driving thin film transistor connected to the first switching thin film transistor, a power line connected to the first driving thin film transistor and parallel to the gate line, a capacitor electrode connected to the first driving thin film transistor and overlapping the power line, and a pixel electrode connected to the first driving thin-film transistor and covering the pixel region.
Abstract:
An organic thin film transistor and a method for manufacturing the same is disclosed, which can improve the device properties by decreasing a contact resistance which occurs in a contact area between an organic semiconductor layer and source/drain electrodes. The organic thin film transistor includes a gate electrode formed on a substrate, a gate insulation layer formed on the gate electrode, source and drain electrodes overlapped with both edges of the gate electrode and formed on the gate insulation layer, an organic semiconductor layer formed on the gate insulation layer including the source/drain electrodes, a first adhesive layer having hydrophilic properties formed between the gate insulation layer and the source/drain electrodes, and a second adhesive layer having hydrophobic properties formed between the organic semiconductor layer and the gate insulation layer.
Abstract:
A method for manufacturing a thin film transistor is provided. In the method, a gate electrode is formed on a substrate. A crystalline gate insulating layer is formed on an entire surface of the substrate having the gate electrode formed thereon. A microcrystalline silicon layer and a doped amorphous silicon layer are sequentially formed on the crystalline gate insulating layer. A metal layer is deposited on the substrate including the crystalline gate insulating layer, the microcrystalline silicon layer and the doped amorphous silicon layer. Source and drain electrodes, an ohmic contact layer and an active layer are formed by etching predetermined portions of the metal layer and the doped amorphous silicon layer to expose a predetermined portion of the microcrystalline silicon layer.