摘要:
A network update interface is presented to a user on a network to display network updates from other users of a mutual social-networking site. The network updates shared by the other users are gathered in a stream and supplied to a facet-filtering system including a network update interface. The user controls the display of certain network update items according to facet-filter characteristics enabled in facet-filter selection panels in the network update interface. The facet-filter characteristics are used by a facet filter to select certain network updates for display to the user in the network update interface. Trending links to further articles with content corresponding to the facet-filter characteristics are displayed to the user according to greatest popularity among the other users. Links to the profiles of the users sharing the articles are also provided in the network update interface.
摘要:
The disclosure relates to a zero-bias heterojunction diode detector with varying impedance. The detector includes a substrate supporting a Schottky structure and an Ohmic contact layer. A metallic contact layer is formed over the Ohmic layer. The Schottky structure comprises a plurality of barrier layers and each of the plurality of barriers layers includes a first material and a second material. In one embodiment, the composition percentage of the second material in each of the barrier layers increases among the plurality of barrier layers from the substrate to the metal layer in order to provide a graded periodicity for the Schottky structure.
摘要:
A semiconductor device including a lateral field-effect transistor and Schottky diode and method of forming the same. In one embodiment, the lateral field-effect transistor includes a buffer layer having a contact covering a substantial portion of a bottom surface thereof, a lateral channel above the buffer layer, another contact above the lateral channel, and an interconnect that connects the lateral channel to the buffer layer. The semiconductor device also includes a Schottky diode parallel-coupled to the lateral field-effect transistor including a cathode formed from another buffer layer interposed between the buffer layer and the lateral channel, a Schottky interconnect interposed between the another buffer layer and the another contact, and an anode formed on a surface of the Schottky interconnect operable to connect the anode to the another contact. The semiconductor device may also include an isolation layer interposed between the buffer layer and the lateral channel.
摘要:
The invention is a self-cross-linked polyvinyl butyral (PVB) binder for organic photoconductors (OPC's) used in electrophotography. The no cross-linked form of the binder is available from Monsanto Co. in the U.S.A. a Butvar.TM., and from Sekisui Chemical Co. in Japan as Slek.TM.. I discovered that the PVB may be self-cross-linked by subjecting it to a thermal cure at between about 150.degree.-300.degree. C. for about 2 hours. I think other ways of cross-linking, for example, e-beam, UV or X-ray radiation, will achieve results similar to those I obtained with heat. No cross-linker, nor cross-linkable copolymer nor catalyst is required to accomplish the cross-linking. After self-cross-linking, the PV has good mechanical durability and good anti-solvent characteristics. In addition, he self-cross-linked PVB's glass transition temperature (T.sub.g) increases from about 65.degree. C. to about 170.degree. C. Also, when conventional photoconductor pigments are dispersed in the self-cross-linked PVB, they are well dispersed, and the resulting OPC's have good charge acceptance, low dark decay, and, in general, good photodischarge characteristics. Also, OPC's with the self-cross-linked PVB exhibited improved adhesion, so multi-layered OPC's made according to this invention will hav improved inter-layer bonding and longer economic lives.
摘要:
An epitaxial structure and method of manufacture for a field-effect transistor capable of low-noise and power applications. Preferably, the epitaxial structure includes an N-type barrier layer comprising a wide-gap semiconductor material having the formula Al.sub.1-y Ga.sub.y P.sub.0.71+z Sb.sub.0.29-z.
摘要:
A semiconductor device having a lateral channel with contacts on opposing surfaces thereof. The semiconductor device includes a conductive substrate having a source contact covering a substantial portion of a bottom surface thereof. The semiconductor device also includes an isolation layer above the conductive substrate, a lateral channel above the isolation layer and a drain contact above the lateral channel. The semiconductor device further includes a gate located in a gate recess interposed between the lateral channel and the drain contact and a drain formed by at least one source/drain contact layer interposed between the lateral channel and the drain contact. The drain is offset on one side of the gate by a gate-to-drain separation distance. The semiconductor device still further includes an interconnect that connects the lateral channel to the conductive substrate operable to provide a low resistance coupling between the source contact and the lateral channel.
摘要:
A semiconductor device exhibiting interband tunneling with a first layer with a first conduction band edge with an energy above a first valence band edge, with the difference a first band-gap. A second layer with second conduction band edge with an energy above a second valence band edge, with the difference a second band-gap, and the second layer formed permitting electron carrier tunneling transport. The second layer is between the first and a third layer, with the difference between the third valence band edge and the third conduction band edge a third band-gap. A Fermi level is nearer the first conduction band edge than the first valence band edge. The second valence band edge is beneath the first conduction band edge. The second conduction band edge is above the third valence band edge. The Fermi level is nearer the third valence band edge than to the third conduction band edge.
摘要:
A heterojunction bipolar transistor is presented, comprising a substrate having formed thereon a heterojunction bipolar transistor layer structure, and including an emitter layer. The emitter layer includes a strained, n-doped compound of indium arsenic and phosphorus. The transistor further comprises, between the substrate and emitter layer, a subcollector layer, a collector layer, a base layer, and an optional spacer layer. The emitter layer may include a graded portion. A contact layer is formed on the emitter layer to provide contacts for the device.
摘要:
A semiconductor device exhibiting interband tunneling with a first layer with a first conduction band edge with an energy above a first valence band edge, with the difference a first band-gap. A second layer with second conduction band edge with an energy above a second valence band edge, with the difference a second band-gap, and the second layer formed permitting electron carrier tunneling transport. The second layer is between the first and a third layer, with the difference between the third valence band edge and the third conduction band edge a third band-gap. A Fermi level is nearer the first conduction band edge than the first valence band edge. The second valence band edge is beneath the first conduction band edge. The second conduction band edge is above the third valence band edge. The Fermi level is nearer the third valence band edge than to the third conduction band edge.
摘要:
Bipolar junction transistor (BJT) devices, particularly heterojunction bipolar transistor (HBT) devices, and methods of making same are described. A combination of InPSb and &rgr;-type InAs is used to create extremely high speed bipolar devices which, due to reduced turn-on voltages, lend themselves to circuits having drastically reduced power dissipation. The described HBTs are fabricated on InAs or GaSb substrates, and include an InPSb emitter. The base includes In and As, in the form of InAs when on an InAs substrate, and as InAsSb when on a GaSb substrate. The collector may be the same as the base to form a single heterojunction bipolar transistor (SHBT) or may be the same as the emitter to form a double heterojunction bipolar transistor (DHBT). Heterojunctions preferably include a grading layer, which may be implemented by continuously changing the bulk material composition, or by forming a chirped superlattice of alternating materials. The grading layer preferably has delta doping planes near its ends to form an electrostatic gradient offsetting the quasi-electric field variation due to the changes in material composition, whereby effective conduction band offset may be substantially eliminated to facilitate speed, and valence band offset increased proportionally to enhance gain.