Abstract:
A laminating device (230) and method are disclosed for laminating semiconductor die (220) on substrates on a panel (200) of substrates. The laminating device (230) includes lamination units (234,236,238,240) that operate independently of each other so that a row or column of semiconductor die (220) may be independently laminated onto a row or column of substrates simultaneously.
Abstract:
A semiconductor package is disclosed including a plurality semiconductor die mounted on stacked and bonded layers of substrate, for example polyimide tape used in tape automated bonding processes. The tape may have a plurality of repeating patterns of traces and contact pads formed thereon. The traces each include aligned interconnect pads on the respective top and bottom surfaces of the substrate for bonding the traces of one pattern to the traces of another pattern after the patterns have been singulated from the substrate, aligned and stacked. Semiconductor die such as flash memory and a controller die are mounted on the traces of the respective patterns on the substrate. In order for the controller die to uniquely address a specific flash memory die in the stack, a group of traces on each substrate supporting the memory die are used as address pins and punched in a unique layout relative to the layout of the traces other substrates. By providing each flash memory semiconductor die on a substrate with a unique layout of address traces, each memory die may be selectively addressed by the controller die.
Abstract:
A semiconductor die and semiconductor package formed therefrom, and methods of fabricating the semiconductor die and package, are disclosed. The semiconductor die includes an edge formed with a plurality of corrugations defined by protrusions between recesses. Bond pads may be formed on the protrusions. The semiconductor die formed in this manner may be stacked in the semiconductor package in staggered pairs so that the die bond pads on the protrusions of a lower die are positioned in the recesses of the upper die.
Abstract:
An electronic component is disclosed including a plurality of stacked semiconductor packages. A first such embodiment includes an internal connector for electrically coupling the stacked semiconductor packages. A second such embodiment includes an external connector for electrically coupling the stacked semiconductor packages.
Abstract:
A laminating device (230) and method are disclosed for laminating semiconductor die (220) on substrates on a panel (200) of substrates. The laminating device (230) includes lamination units (234,236,238,240) that operate independently of each other so that a row or column of semiconductor die (220) may be independently laminated onto a row or column of substrates simultaneously.
Abstract:
A memory device including graphical content and a method of making the memory device with graphical content are disclosed. The graphical content is formed on a release media. The release media and the unencapsulated memory device are placed in a mold and encapsulated. During the encapsulation and curing of the molding compound, the graphical content is transferred from the release media to the encapsulated memory device.
Abstract:
A memory device is disclosed including at least one surface pre-treated to roughen the surface for better adhesion of ink on the surface. The surface of the memory device may be pre-treated by scoring lines in the surface with a laser or by forming discrete deformations with a particle blaster. The surface may also be roughened by providing a roughened pattern on a mold plate during an encapsulation process. In further examples, the surface may be chemically pre-treated to roughen the surface and/or increase the adhesion energy of the surface.
Abstract:
An electronic component is disclosed including a plurality of stacked semiconductor packages. A first such embodiment includes an internal connector for electrically coupling the stacked semiconductor packages. A second such embodiment includes an external connector for electrically coupling the stacked semiconductor packages.
Abstract:
A flash memory card and methods of manufacturing same are disclosed. The card includes a semiconductor package fabricated to receive a single-sided or double-sided lid. A surface of the semiconductor package may be formed with holes, trenches and/or pockmarks. After the holes, trenches and/or pockmarks are formed, a lid may be attached to the package surface in an injection molding process. During the injection molding process, the molten plastic flows into the holes, trenches and/or pockmarks to interconnect with the surface of the semiconductor package. Thus, when the molten plastic hardens, the holes, trenches and/or pockmarks ensure that the lid remains firmly attached to semiconductor package.
Abstract:
A wire bonded structure for a semiconductor device is disclosed. The wire bonded structure comprises a bonding pad; and a continuous length of wire mutually diffused with the bonding pad, the wire electrically coupling the bonding pad with a first electrical contact and a second electrical contact different from the first electrical contact.