摘要:
Formation of BPSG surface defects upon exposure to atmosphere is prevented by a plasma treatment method for converting boron and/or phosphorus materials separated from silicon near the surface of the doped glass layer to gas phase compounds. The treatment plasma is generated from a treatment process gas containing one of (a) a fluorine compound or (b) a hydrogen compound.
摘要:
Methods for etching dielectric layers comprising silicon and nitrogen are provided herein. In some embodiments, such methods may include providing a substrate having a dielectric layer comprising silicon and nitrogen disposed thereon, forming reactive species from a process gas comprising hydrogen (H2) and nitrogen trifluoride (NF3) using a remote plasma; and etching the dielectric layer using the reactive species. In some embodiments, an oxide layer is disposed adjacent to the dielectric layer. In some embodiments, the flow rate ratio of the process gas can be adjusted such that an etch selectivity of the dielectric layer to at least one of the oxide layer or the substrate is between about 0.8 to about 4.
摘要:
The present invention generally provides apparatus and methods for selectively removing various oxides on a semiconductor substrate. One embodiment of the invention provides a method for selectively removing an oxide on a substrate at a desired removal rate using an etching gas mixture. The etching gas mixture comprises a first gas and a second gas, and a ratio of the first gas and a second gas is determined by the desired removal rate.
摘要:
Embodiments provide methods for treating a metal silicide contact which includes positioning a substrate having an oxide layer disposed on a metal silicide contact surface within a processing chamber, cleaning the metal silicide contact surface to remove the oxide layer while forming a cleaned silicide contact surface during a cleaning process, and exposing the cleaned silicide contact surface to a silicon-containing compound to form a recovered silicide contact surface during a regeneration process. In some examples, the cleaning of the metal silicide contact surface includes cooling the substrate to an initial temperature of less than 65° C., forming reactive species from a gas mixture of ammonia and nitrogen trifluoride by igniting a plasma, exposing the oxide layer to the reactive species to form a thin film, and heating the substrate to about 100° C. or greater to remove the thin film from the substrate while forming the cleaned silicide contact surface.
摘要:
A method and apparatus for selectively etching doped semiconductor oxides faster than undoped oxides. The method comprises applying dissociative energy to a mixture of nitrogen trifluoride and hydrogen gas remotely, flowing the activated gas toward a processing chamber to allow time for charged species to be extinguished, and applying the activated gas to the substrate. Reducing the ratio of hydrogen to nitrogen trifluoride increases etch selectivity. A similar process may be used to smooth surface defects in a silicon surface.
摘要:
The present invention generally provides apparatus and methods for selectively removing various oxides on a semiconductor substrate. One embodiment of the invention provides a method for selectively removing an oxide on a substrate at a desired removal rate using an etching gas mixture. The etching gas mixture comprises a first gas and a second gas, and a ratio of the first gas and a second gas is determined by the desired removal rate.
摘要:
Method for recovering treated metal silicide surfaces or layers are provided. In at least one embodiment, a substrate having an at least partially oxidized metal silicide surface disposed thereon is cleaned to remove the oxidized regions to provide an altered metal silicide surface. The altered metal silicide surface is then exposed to one or more silicon-containing compounds at conditions sufficient to recover the metal silicide surface.
摘要:
A method for forming a structure includes forming at least one feature across a surface of a substrate. A nitrogen-containing dielectric layer is formed over the at least one feature. A first portion of the nitrogen-containing layer on at least one sidewall of the at least one feature is removed at a first rate and a second portion of the nitrogen-containing layer over the substrate adjacent to a bottom region of the at least one feature is removed at a second rate. The first rate is greater than the second rate. A dielectric layer is formed over the nitrogen-containing dielectric layer.
摘要:
A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the apparatus comprises a support assembly. In one embodiment, the support assembly includes a shaft coupled to a disk-shaped body. The shaft has a vacuum conduit, a heat transfer fluid conduit and a gas conduit formed therein. The disk-shaped body includes an upper surface, a lower surface and a cylindrical outer surface. A thermocouple is embedded in the disk-shaped body. A flange extends radially outward from the cylindrical outer surface, wherein the lower surface of the disk-shaped body comprises one side of the flange. A fluid channel is formed in the disk-shaped body proximate the flange and lower surface. The fluid channel is coupled to the heat transfer fluid conduit of the shaft. A plurality of grooves are formed in the upper surface of the disk-shaped body, and are coupled by a hole in the disk-shaped body to the vacuum conduit of the shaft. A gas conduit is formed through the disk-shaped body and couples the gas conduit of the shaft to the cylindrical outer surface of the disk-shaped body. The gas conduit in the disk-shaped body has an orientation substantially perpendicular to a centerline of the disk-shaped body.
摘要:
Embodiments described herein provide methods for removing native oxide surfaces on substrates while simultaneously passivating the underlying substrate surface. In one embodiment, a method is provided which includes positioning a substrate containing an oxide layer within a processing chamber, adjusting a first temperature of the substrate to about 80° C. or less, generating a cleaning plasma from a gas mixture within the processing chamber, such that the gas mixture contains ammonia and nitrogen trifluoride having an NH3/NF3 molar ratio of about 10 or greater, and condensing the cleaning plasma onto the substrate. A thin film, containing ammonium hexafluorosilicate, is formed in part, from the native oxide during a plasma clean process. The method further includes heating the substrate to a second temperature of about 100° C. or greater within the processing chamber while removing the thin film from the substrate and forming a passivation surface thereon.
摘要翻译:本文描述的实施例提供了用于去除衬底上的自然氧化物表面同时钝化下面的衬底表面的方法。 在一个实施例中,提供了一种方法,其包括将包含氧化物层的衬底定位在处理室内,将衬底的第一温度调节至约80℃或更低,从处理室内的气体混合物产生清洁等离子体 使得气体混合物含有NH 3/3N 3 N 3摩尔比为约10或更大的氨和三氟化氮,并将清洗等离子体冷凝到基底上。 含有六氟硅酸铵的薄膜在等离子体清洁过程中部分地由天然氧化物形成。 该方法还包括在处理室内加热衬底至约100℃或更高的第二温度,同时从衬底上移除薄膜并在其上形成钝化表面。