摘要:
A display panel includes a display area, a non-display area, a plurality of signal pads and a passive covering layer. The non-display area is adjacent to the display area. The signal pads are disposed within the non-display area. The passive covering layer is disposed on the display area and extends to cover at least a portion of the non-display area. The passive covering layer has a first thickness within the display area. The passive covering layer has a second thickness within the non-display area. The first thickness is greater than the second thickness.
摘要:
The present invention relates generally to optical waveguides for the transmission of electromagnetic energy. The present invention relates more particularly to optical couplers for coupling optical fibers, and methods for making them. One aspect of the present invention is an optical coupler for use with a polarization-maintaining input optical fiber and a polarization-maintaining output optical fiber. The coupler includes: a tube having a wide end, a narrow end having an end face, and a taper therebetween; a polarization-maintaining feed-through optical fiber having a first end having an end face and a second end, the polarization-maintaining feed-through optical fiber being disposed within the tube from the wide end to the narrow end, at least the narrow end of the tube being fused around a first length of the polarization-maintaining feed-through optical fiber including the first end of the polarization-maintaining feed-through optical fiber to form a coupler end face comprising the end face of the tube and the end face of the first end of the polarization-maintaining feed-through optical fiber. In one aspect of the invention, the polarization-maintaining feed-through optical fiber has an outer diameter no greater than about 200 μm in the region in which the tube is fused around it. In another aspect of the invention, the polarization-maintaining feed-through optical fiber has an outer diameter at the coupler end face no greater than about 75% of the diameter of the polarization-maintaining input optical fiber.
摘要:
A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
摘要:
A three-wheeled motor vehicle includes a main body, two shafts, two wheel bases, a blocking structure fixed to the main body and a linkage module. Each shaft has first, second and third pivot points. The third pivot point between the first and second pivot points is pivoted to the main body. One wheel base is pivoted to the first pivot points. The other wheel base is pivoted to the second pivot points. The wheel bases and the shafts form a parallelogram four bar mechanism. The linkage module is coupled between the main body and the parallelogram four bar mechanism. When the main body tilts as the three-wheeled motor vehicle turning, the linkage module changes from a first state to a second state to drive the wheel bases to tilt.The linkage module in the second state leans against the blocking structure to limit the tilt range of the wheel bases.
摘要:
A semiconductor device includes a gate, which comprises a gate electrode and a gate dielectric underlying the gate electrode, a spacer formed on a sidewall of the gate electrode and the gate dielectric, a buffer layer having a first portion underlying the gate dielectric and the spacer and a second portion adjacent the spacer wherein the top surface of the second portion of the buffer layer is recessed below the top surface of the first portion of the buffer layer, and a source/drain region substantially aligned with the spacer. The buffer layer preferably has a greater lattice constant than an underlying semiconductor substrate. The semiconductor device may further include a semiconductor-capping layer between the buffer layer and the gate dielectric, wherein the semiconductor-capping layer has a smaller lattice constant than the buffer layer.
摘要:
A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
摘要:
An integrated circuit having high performance CMOS devices with good short channel effects may be made by forming a gate structure over a substrate; forming pocket implant regions and source/drain extensions in the substrate; forming spacers along sides of the gate structure; and thermal annealing the substrate when forming the spacers, the thermal annealing performed at an ultra-low temperature. An integrated circuit having high performance CMOS devices with low parasitic junction capacitance may be made by forming a gate structure over a substrate; forming pocket implant regions and source/drain extensions in the substrate; forming spacers along sides of the gate structure; performing a low dosage source/drain implant; and performing a high dosage source/drain implant.
摘要:
A method is disclosed for forming silicided gate electrodes and unsilicided poly resistors. After patterning a semiconductor material for the gate electrode and resistor structures, a first dielectric layer is used to protect a poly resistor that is not to be silicided, then a first silicidation is performed for partially siliciding the gate electrode of the transistor. If the gate electrode is thick, a second dielectric layer is used to protect the resistor that is not to be silicided, then a second silicidation is performed for fully siliciding the gate electrode.
摘要:
A MOSFET having a nitrided gate dielectric and its manufacture are disclosed. The method comprises providing a substrate and depositing a non-high-k dielectric material on the substrate. The non-high-k dielectric comprises two layers. The first layer adjacent the substrate is essentially nitrogen-free, and the second layer includes between about 1015 atoms/cm3 to about 1022 atoms/cm3 nitrogen. The MOSFET further includes a high-k dielectric material on the nitrided, non-high-k dielectric. The high-k dielectric preferably includes HfSiON, ZrSiON, or nitrided Al2O3. Embodiments further include asymmetric manufacturing techniques wherein core and peripheral integrated circuit areas are separately optimized.
摘要:
A MOS transistor having a highly stressed channel region and a method for forming the same are provided. The method includes forming a first semiconductor plate over a semiconductor substrate, forming a second semiconductor plate on the first semiconductor plate wherein the first semiconductor plate has a substantially greater lattice constant than the second semiconductor plate, and forming a gate stack over the first and the second semiconductor plates. The first and the second semiconductor plates include extensions extending substantially beyond side edges of the gate stack. The method further includes forming a silicon-containing layer on the semiconductor substrate, preferably spaced apart from the first and the second semiconductor plates, forming a spacer, a LDD region and a source/drain region, and forming a silicide region and a contact etch stop layer. A high stress is developed in the channel region. Current crowding effects are reduced due to the raised silicide region.