Abstract:
A transducer according to one embodiment comprises a first ferromagnetic layer; a second ferromagnetic layer; and an electrically conductive layer positioned between the ferromagnetic layers; wherein a length of the first ferromagnetic layer in a first direction parallel to a plane of deposition thereof is greater than a length of the electrically conductive layer in the first direction such that a first end of the first ferromagnetic layer extends beyond an end of the electrically conductive layer in the first direction, wherein an electrical current enters or exits the end of the first ferromagnetic layer that extends beyond the end of the electrically conductive layer in the first direction. Additional transducer structures, and systems implementing such transducers, are also disclosed.
Abstract:
A magnetic structure in one embodiment includes a tunnel barrier layer; a free layer; and a buffer layer between the tunnel barrier layer and the free layer, wherein a cross sectional area of the tunnel barrier layer in a direction parallel to a plane of deposition thereof is greater than a cross sectional area of the free layer in a direction parallel to a plane of deposition thereof, wherein a cross sectional area of the buffer layer in a direction parallel to a plane of deposition thereof is greater than a cross sectional area of the free layer in the direction parallel to the plane of deposition thereof. Additional systems and methods are also presented.
Abstract:
A double notched magnetic structure for use in a magnetic head for avoiding stray field writing. The structure could be a magnetic shield, magnetic pole of a write head or some other magnetic structure used in a magnetic head of a magnetic recording system, and has notches formed at both the front end (adjacent to the ABS) and at the back end (away from the ABS). The notches at the front end form a forward protruding portions that performs the necessary function of the structure, such as magnetic shielding, and has laterally extending recessed portions (recessed by the front notches) that move the flux focal points of the structure away from the ABS to avoid stray field writing. The back notches form a backward extending portion that affects the geometry of the structure to prevent the focusing of magnetic flux caused by stray magnetic fields having a component perpendicular to the ABS.
Abstract:
Embodiments of the present invention are directed to structures of a recording head having a winged design for reducing corner stray magnetic fields. In one embodiment, the present invention comprises a magnetic recording head comprising a plurality of components. In embodiments of the present invention at least one of the plurality of components comprises a surface exposed to an air bearing surface when in operation with a recording medium. The surface exposed to the air bearing surface comprises notched edges for constraining corner stray magnetic fields associated therewith.
Abstract:
CPP read sensors and associated methods of fabrication are described that provide lateral spreading of a sense current along the length of an AFM layer of the read sensor. Winged regions (i.e., extended portions) are added to the layers of a CPP sensor stack to induce lateral spreading of the sense current in the AFM layer. Particularly, the pinned layer and the AFM layer have widths greater than the other layers of the sensor stack. Further, the pinned layer comprises multiple layers of materials, with a first layer of material closer to the AFM layer having a lower conductivity and/or a lower spin dependent scattering asymmetry than the second layer of material.
Abstract:
A magnetoresistive sensor having a pinned layer that extends beyond the stripe height defined by the free layer of the sensor. The extended pinned layer has a strong shape induced anisotropy that maintains pinning of the pinned layer moment. The extended portion of the pinned layer has sides beyond the stripe height that are perfectly aligned with the sides of the sensor within the stripe height. This perfect alignment is made possible by a manufacturing method that uses a mask structure for more than one manufacturing phase, eliminating the need for multiple mask alignments.
Abstract:
A magnetoresistive sensor having a pinned layer that extends beyond the stripe height defined by the free layer of the sensor. The extended pinned layer has a strong shape induced anisotropy that maintains pinning of the pinned layer moment. The extended portion of the pinned layer has sides beyond the stripe height that are perfectly aligned with the sides of the sensor within the stripe height. This perfect alignment is made possible by a manufacturing method that uses a mask structure for more than one manufacturing phase, eliminating the need for multiple mask alignments.
Abstract:
A magnetic head (slider) for perpendicular recording which requires no lapping is described. The head is fabricated with an air bearing surface that is parallel to the wafer surface. The coil and pole pieces are formed from thin films disposed parallel to the air bearing surface. Standard lithographic techniques can be used to define the shapes, gaps and pole piece dimensions. Non-rectilinear shapes can be formed; for example, side shields that conform around the write pole piece region. The thickness of the main and return pole pieces are controlled by the deposition process rather than by lapping. The saw cuts used to separate the individual sliders from the rest of the wafer are perpendicular to the air-bearing surface and do not pass through any critical features.
Abstract:
Several embodiments of a sense current perpendicular to the planes of the sensor (CPP) and flux guide type of read head has a gap between first and second shield layers at an air bearing surface (ABS) where the flux guide is located which is less than a gap between the first and second shield layers at a recessed location where the sensor is located. This reduced gap increases the linear bit density capability of the read head. A longitudinal bias stack (LBS) is located in the sensor stack. Several unique methods of construction are described for forming the magnetic head assemblies.
Abstract:
A magnetic tunnel junction (MTJ) device usable as a magnetic memory cell or magnetoresistive sensor, such as a MTJ read head for magnetic recording, has the free ferromagnetic layer located on the bottom of the device, the bottom free layer being formed on a special underlayer. The MTJ read head may be a flux-guided head that uses the free layer as a flux guide for directing magnetic flux from the magnetic media to the sensing region of the MTJ. The special underlayer for the growth of the free layer is an alloy comprising Mn, one of Pt, Ni, Ir and Os, and an additive X selected from Ta, Al, Ti, Cu, Cr and V. Without the additive, the underlayer alloy is antiferromagnetic. The additive is present in an amount sufficient to render the alloy to have no magnetic ordering, i.e., it is neither antiferromagnetic nor ferromagnetic, but without substantially affecting the preferred crystalline texture and unit cell size so that the underlayer is well-suited as a growth-enhancing underlayer for the free layer.