Abstract:
A static random access memory apparatus and a bit-line voltage controller includes a controller, a pull-up circuit, a pull-down circuit and a voltage keeping circuit. The controller receives a bank selecting signal and a clock signal, and decides a pull-up time period, a pull-down time period and a voltage keeping time period according to the bank selecting signal and the clock signal. The pull-up circuit pulls up a bit-line power according to a first reference voltage within the pull-up time period. The pull-down circuit pulls down the bit-line power according to a second reference voltage within the pull-down time period. The voltage keeping circuit keeps the bit-line power to equal to an output voltage during the voltage keeping time period. The voltage keeping time period is after the pull-up time period and the pull-down time period.
Abstract:
A single-ended SRAM including at least one memory cell and a third switch is provided. The memory cell includes a data-latching unit, a first switch, a second switch and a data-transferring unit. The data-latching unit is configured for latching the received input data and provides a storage data and the inverse data of the storage data. The first switch transfers a reference data to the data-latching unit according to a first word-line signal. The second switch transfers the reference data to the data-latching unit according to a second word-line signal. The data-transferring unit decides whether or not to transfer the reference data to the bit-line according to the storage data and a control signal. The third switch receives the reference data and the control signal and transfers the reference data to the first switch, the second switch and the data-transferring unit according to the control signal.
Abstract:
A static random access memory with data controlled power supply, which comprises a memory cell circuit and at least one Write-assist circuit, for providing power to the memory cell circuit according to data to be written to the memory cell circuit.
Abstract:
A Random Access Memory (RAM) is provided. The RAM includes a plurality of word-line drivers, at least a first tracking transistor and a second tracking transistor. Each word-line driver has an input node receiving a decoding signal, a power node receiving an operation voltage and a driving node driving a word-line. In an embodiment, the first tracking transistor has two channel terminal nodes respectively coupled to the driving node of one of the word-line driver and a channel terminal node of the second tracking transistor; wherein the first tracking transistor has electronic characteristics tracking those of a driving transistor of word-line driver, and the second tracking transistor has electronic characteristics tracking those of pass-gate transistor(s) in each cell of the RAM.
Abstract:
A Random Access Memory (RAM) with a plurality of cells is provided. In an embodiment, the cells of a same column are coupled to a same pair of bit-lines and are associated to a same power controller. Each cell has two inverters; the power controller has two power-switches. For the cells of the same column, the two power-switches respectively perform independent supply voltage controls for the two inverters in each cell according to data-in voltages of the bit-lines during Write operation.
Abstract:
The present invention provides a Schmitt trigger-based FinFET static random access memory (SRAM) cell, which is an 8-FinFET structure. A FinFET has the functions of two independent gates. The new SRAM cell uses only 8 FinFET per cell, compared with the 10-FinFET structure in previous works. As a result, the cell structure of the present invention can save chip area and raise chip density. Furthermore, this new SRAM cell can effectively solve the conventional problem that the 6T SRAM cell is likely to have read errors at a low operating voltage.
Abstract:
A dynamic logic gate has a device for charging a dynamic node during a pre-charge phase of a clock. A logic tree evaluates the dynamic node with a device during an evaluate phase of the clock. The dynamic node has a keeper circuit comprising an inverter with its input coupled to the dynamic node and its output coupled to the back gate of a dual gate PFET device. The source of the dual gate PFET is coupled to the power supply and its drain is coupled to the dynamic node forming a half latch. The front gate of the dual gate PFET is coupled to a logic circuit with a mode input and a logic input coupled back to a node sensing the state of the dynamic node. The mode input may be a slow mode to preserve dynamic node state or the clock delayed that turns ON the strong keeper after evaluation.
Abstract:
Techniques are provided for asymmetrical SRAM cells which can be improved, for example, by providing one or more of improved read stability and improved write performance and margin. A first inverter and a second inverter are cross-coupled and configured for selective coupling to true and complementary bit lines under control of read and write word lines. The first inverter is formed by a first, n-type, FET (NFET) and a second, p-type, FET (PFET). Process and/or technology approaches can be employed to adjust the relative strength of the FETS to obtain, for example, read margin, write margin, and/or write performance improvements.
Abstract:
A cascaded pass-gate test circuit including interposed split-output drive devices provides accurate measurement of critical timing parameters of pass gates. The rise time and fall time of signals passed through the pass gate can be separately measured in a ring oscillator or one-shot delay line configuration. Inverters or other buffer circuits are provided as drive devices to couple the pass gates in cascade. The final complementary tree in each drive device is split so that the only one of the output pull-down transistor or pull-up transistor is connected to the next pass gate input, while the other transistor is connected to the output of the pass gate. The result is that the state transition associated with the device connected to the pass gate input is dominant in the delay, while the other state transition is propagated directly to the output of the pass gate, bypassing the pass gate.
Abstract:
Techniques are provided for back-gate control in an asymmetrical memory cell. In one aspect, the cell includes five transistors and can be employed for static random access memory (SRAM) applications. An inventive memory circuit can include a plurality of bit line structures, a plurality of word line structures that intersect the plurality of bit line structures to form a plurality of cell locations, and a plurality of cells located at the plurality of cell locations. Each cell can be selectively coupled to a corresponding one of the bit line structures under control of a corresponding one of the word line structures. Each cell can include a first inverter having first and second field effect transistors (FETS) and a second inverter with third and fourth FETS that is cross-coupled to the first inverter to form a storage flip-flop. One of the FETS in the first inverter can be configured with independent front and back gates and can function as both an access transistor and part of one of the inverters.