摘要:
A method is provided for selecting a representative set of training data for training a statistical model in a machine condition monitoring system. The method reduces the time required to choose representative samples from a large data set by using a nearest-neighbor sequential clustering technique in combination with a kd-tree. A distance threshold is used to limit the geometric size the clusters. Each node of the kd-tree is assigned a representative sample from the training data, and similar samples are subsequently discarded.
摘要:
A method for monitoring machine conditions is based on machine learning through the use of a statistical model. A correlation coefficient is calculated using weights assigned to each sample that indicate the likelihood that that sample is an outlier. The resulting correlation coefficient is more robust against outliers. The calculation of the weight is based on the Mahalanobis distance from the sample to the sample mean. Additionally, hierarchical clustering is applied to intuitively reveal group information among sensors. By specifying a similarity threshold, the user can easily obtain desired clustering results.
摘要:
A method is provided for selecting a representative set of training data for training a statistical model in a machine condition monitoring system. The method reduces the time required to choose representative samples from a large data set by using a nearest-neighbor sequential clustering technique in combination with a kd-tree. A distance threshold is used to limit the geometric size the clusters. Each node of the kd-tree is assigned a representative sample from the training data, and similar samples are subsequently discarded.
摘要:
A method for monitoring machine conditions is based on machine learning through the use of a statistical model. A correlation coefficient is calculated using weights assigned to each sample that indicate the likelihood that that sample is an outlier. The resulting correlation coefficient is more robust against outliers. The calculation of the weight is based on the Mahalanobis distance from the sample to the sample mean. Additionally, hierarchical clustering is applied to intuitively reveal group information among sensors. By specifying a similarity threshold, the user can easily obtain desired clustering results.