Abstract:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
Abstract:
A system and process for manufacturing custom printed circuit boards on pre-provided substrates, wherein the substrate is pre-provided with standard integrated circuits. The standard integrated circuits are pre-provided on the substrate in a conventional manner, such as by standard integrated circuit technologies, in many different packing technologies. The user designs the custom printed circuit board using a design tool to perform one or more specific electronic functions, based on the pre-provided electronic devices, and/or custom designed and direct printed electronic devices. The electronic devices includes transistors, resistors, capacitors, among other types of devices. The system and process allows users to customize standard “generic” circuit boards with some known electronic functions for their own particular application. Examples of such uses include displays, the automotive industry and many others.
Abstract:
A system and process for manufacturing custom printed circuit boards on pre-provided substrates, wherein the substrate can be pre-provided with electronic devices. The electronic devices can be pre-provided on the substrate by direct printing, or in a more conventional manner, such as by standard integrated circuit technologies, in many different packing technologies. The user designs the custom printed circuit board using a design tool to perform one or more specific electronic functions, based on the pre-provided electronic devices, and/or custom designed and direct printed electronic devices. The electronic devices includes transistors, resistors, capacitors, among other types of devices. Examples of the electronic functions that can realized using the system and process described herein include, but are not limited to, include an RFID device, and a PROM.
Abstract:
A process for the production of metal nanoparticles. Nanoparticles are formed by combining a metal compound with a solution that comprises a polyol and a substance that is capable of being adsorbed on the nanoparticles. The nanoparticles are precipitated by adding a nanoparticle-precipitating liquid in a sufficient amount to precipitate at least a substantial portion of the nanoparticles and of a protic solvent in a sufficient amount to improve the separation of the nanoparticles from the liquid phase.
Abstract:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
Abstract:
Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
Abstract:
An apparatus and method for making a printed circuit board comprising a substrate and an electrical circuit is provided. The circuit is formed by deposition of a plurality of electronic inks onto the substrate and curing of each of the electronic inks. The deposition may be performed using an ink-jet printing process. The inkjet printing process may include the step of printing a plurality of layers, wherein a first layer includes at least one electronic ink deposited directly onto the substrate, and wherein each subsequent layer includes at least one electronic ink deposited on top of at least a portion of a previous layer when the previous layer has been cured. One or more of the layers may include at least two of the electronic inks.
Abstract:
A process for fabricating an electrical component using an ink-jet printing process is provided. The process includes the steps of selecting at least one electronic ink having at least a first functionality when cured; determining a positional layout for a plurality of droplets of the electronic ink(s) such that, based at least on the first functionality, the positional layout provides a desired response for the electrical component; providing at least a first characteristic that relates to the electrical component; comparing the determined positional layout to at least one corresponding entry in a lookup table of empirical data relating to the first characteristic and to the determined positional layout; adjusting the determined positional layout accordingly; and printing each of the droplets of the electronic ink(s) onto a substrate according to the adjusted positional layout. The step of determining a positional layout may include determining a volume of ink to be deposited.
Abstract:
Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
Abstract:
Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.