Abstract:
In one aspect, a first charge pump has serially arranged charge pump stages. Inter-stage nodes between adjacent stages are pumped by a second charge pump. In another aspect, timing of the charge pump stages is controlled by at a command clock signal. The command clock signal and command data are communicated between a integrated circuit with the charge pump and an external circuit.
Abstract:
A dual damascene process is disclosed. A substrate having a base dielectric layer, a lower wiring layer inlaid in the base dielectric layer, and a cap layer capping the lower wiring layer is provided. A dielectric layer is deposited on the cap layer. A silicon oxide layer is deposited on the dielectric layer. A metal hard mask is formed on the silicon oxide layer. A trench opening is etched into the metal hard mask. A partial via feature is etched into the dielectric layer within the trench opening. The trench opening and the partial via feature are etch transferred into the dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the cap layer. A liner removal step is performed to selectively remove the exposed cap layer from the dual damascene opening by employing CF4/NF3 plasma.
Abstract translation:公开了一种双镶嵌工艺。 提供了具有基底电介质层,嵌入基底电介质层中的下部布线层和覆盖下部布线层的盖层的基板。 介电层沉积在盖层上。 氧化硅层沉积在电介质层上。 在氧化硅层上形成金属硬掩模。 将沟槽开口蚀刻到金属硬掩模中。 部分通孔特征被蚀刻到沟槽开口内的电介质层中。 沟槽开口和部分通孔特征被蚀刻转移到电介质层中,从而形成暴露盖层的一部分的双镶嵌开口。 执行衬垫去除步骤以通过使用CF 4 N 3 N 3等离子体从双镶嵌开口选择性地去除暴露的盖层。
Abstract:
A method for operating a charge-trapping multi-level cell (“MLC”) memory array comprises programming a first plurality of charge-trapping sites to a preliminary first-level value, programming a second plurality of charge-trapping sites to a preliminary second-level value, and programming a third plurality of charge-trapping sites to a final third-level value using a first programming scheme. Then, the first plurality of charge-trapping sites is programmed to a final first-level value and the second plurality of charge-trapping sites is programmed to a final second-level value using a second programming scheme.
Abstract:
A dual damascene process starts with providing a substrate having thereon a base layer, a lower copper wiring inlaid into the base layer, and a lower cap layer covering the inlaid lower copper wiring. A dielectric layer is deposited on the lower cap layer. A TEOS-based oxide cap layer is deposited on the dielectric layer. The TEOS-based oxide cap layer has a carbon content lower than 1×1019 atoms/cm3. A metal hard mask is deposited on the TEOS-based oxide cap layer. A trench recess is etched into the metal hard mask and the TEOS-based oxide cap layer. A partial via feature is then etched into the TEOS-based oxide cap layer and the dielectric layer through the trench recess. The trench recess and partial via feature are etch transferred into the underlying dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the lower copper wiring.
Abstract:
A process and structure for a metal interconnect comprises providing a substrate with a first electric conductor, forming a first dielectric layer and a first patterned hard mask, using the first patterned hard mask to form a first opening and a second electric conductor, forming a second dielectric layer and a second patterned hard mask, using the second patterned hard mask as an etching mask and using a first patterned hard mask as an etch stop layer to form a second opening and a third electric conductor.
Abstract:
A low-k dielectric film is deposited on the wafer. A metal layer is then deposited over the low-k dielectric film. A resist pattern is formed over the metal layer. The resist pattern is then transferred to the underlying metal layer to form a metal pattern. The resist pattern is stripped off. A through hole is plasma etched into the low-k dielectric film by using the metal pattern as a hard mask. The plasma etching causes residues to deposit within the through hole. A wet treatment is then performed to soften the residues. A plasma dry treatment is carried out to crack the residues.
Abstract:
A dual damascene process starts with providing a substrate having thereon a base layer, a lower copper wiring inlaid into the base layer, and a lower cap layer covering the inlaid lower copper wiring. A dielectric layer is deposited on the lower cap layer. A TEOS-based oxide cap layer is deposited on the dielectric layer. The TEOS-based oxide cap layer has a carbon content lower than 1×1019 atoms/cm3. A metal hard mask is deposited on the TEOS-based oxide cap layer. A trench recess is etched into the metal hard mask and the TEOS-based oxide cap layer. A partial via feature is then etched into the TEOS-based oxide cap layer and the dielectric layer through the trench recess. The trench recess and partial via feature are etch transferred into the underlying dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the lower copper wiring.
Abstract:
A bi-directional transient voltage suppression device and a method of making same is provided. The method begins by providing a semiconductor substrate of a first conductivity type, and depositing a first epitaxial layer of a second conductivity type opposite the first conductivity type on the substrate. The substrate and the first epitaxial layer form a first p-n junction. A second epitaxial layer having the second conductivity type is deposited on the first epitaxial layer. The second epitaxial layer has a higher dopant concentration than the first epitaxial layer. A third layer having the first conductivity type is formed on the second epitaxial layer. The second epitaxial layer and the third layer form a second p-n junction.
Abstract:
A beat frequency cancellation circuit, for an amplifier, includes a coupling device connected between two signal processing paths of the amplifier for compensating for beat frequency effects of output signals between the signal processing paths.
Abstract:
A beat frequency cancellation circuit, for an amplifier, includes a coupling device connected between two signal processing paths of the amplifier for compensating for beat frequency effects of output signals between the signal processing paths.