Abstract:
This disclosure relates to an active pixel cell including a shallow trench isolation (STI) structure. The active pixel cell further includes a photodiode neighboring the STI structure, where a first stress resulted from substrate processing prior to deposition of a pre-metal dielectric layer increases dark current and white cell counts of a photodiode of the active pixel cell. The active pixel cell further includes a transistor, where the transistor controls the operation of the active pixel cell. The active pixel cell further includes a stress layer over the photodiode, the STI structure, and the transistor, and the stress layer has a second stress that counters the first stress exerted on the substrate, and the second stress reduces the dark current and the white cell counts caused by the first stress.
Abstract:
Stress engineering for PMOS and NMOS devices is obtained with a compressive stressor layer over the PMOS device, wherein the compressive stressor layer has the shape of a polygon when viewed from a top down perspective, and wherein the polygon includes a recess defined in its periphery. The NMOS device has a tensile stress layer wherein the tensile stressor layer has the shape of a polygon when viewed from the top down perspective, wherein the polygon includes a protrusion in its periphery, the protrusion extending into the recess of the first stressor layer. Thus, stress performance for both devices can be improved without violating design rules.
Abstract:
A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.
Abstract:
A semiconductor device, such as a PMOS transistor, having localized stressors is provided. Recesses are formed on opposing sides of gate electrodes such that the recesses are offset from the gate electrode by dummy spacers. The recesses are filled with a stress-inducing layer. The dummy recesses are removed and lightly-doped drains are formed. Thereafter, new spacers are formed and the stress-inducing layer is recessed. One or more additional implants may be performed to complete source/drain regions. In an embodiment, the PMOS transistor may be formed on the same substrate as one or more NMOS transistors. Dual etch stop layers may also be formed over the PMOS and/or the NMOS transistors.
Abstract:
Disclosed herein are various embodiments of techniques for preventing silicide stringer or encroachment formation during metal salicide formation in semiconductor devices. The disclosed technique involves depositing a protective layer, such as a nitride or other dielectric layer, over areas of the semiconductor device where metal silicide formation is not desired because such formation detrimentally affects device performance. For example, silicon particles that may remain in device features that are formed through silicon oxidation, such as under the gate sidewall spacers and proximate to the perimeter of shallow trench isolation structures, are protected from reacting with metal deposited to form metal silicide in certain areas of the device. As a result, silicide stringers or encroachment in undesired areas is reduced or eliminated by the protective layer.
Abstract:
A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.
Abstract:
A method of manufacturing a plurality of MOS transistors includes forming gate structures in first and second regions on a substrate and forming mask portions only between adjacent drain sides of the respective gate structures only in the first region. Dopant of a first conductivity type that is the same as that of the substrate, is implanted at first and second angles in both the first and second regions to form halo regions only in source sides under the gate structures in the first region and in both source and drain sides under the gate structures in the second region.
Abstract:
Within a method for forming an isolation region within a semiconductor substrate, there is, prior to forming the isolation region within an isolation trench formed adjoining an active region of a semiconductor substrate, implanted a dopant into a corner of the active region. The corner of the active region is uncovered by laterally etching an isolation trench mask to form a laterally etched isolation trench mask which serves as an ion implantation mask layer when implanting the dopant into the corner of the active region. The method provides for enhanced performance, and minimal affect of a semiconductor device formed within the active region of the semiconductor substrate.
Abstract:
A method for creating a self-aligned channel implant with elevated source/drain areas. Forming a thin dielectric layer on top of a silicon substrate, a thick layer of oxide is deposited over this dielectric. An opening is exposed and etched through the layer of oxide, through the dielectric and into the underlying silicon substrate creating a shallow trench in the substrate. By performing the channel implant LDD implant, pocket implant, forming the gate spacers and electrode, removing the thick layer of oxide and forming the S/D regions a gate electrode has been created with elevated S/D regions. By forming the gate spacers, performing channel implant, forming the gate electrode, removing the thick layer of oxide and performing S/D implant a gate electrode has been created with elevated S/D regions and disposable spacers. By forming the gate spacers and the gate electrode, removing the thick layer of oxide and performing S/D implant a gate electrode has been created with elevated S/D regions and spacers where the gate poly protrudes above the spacers thus enhancing the formation of silicide.
Abstract:
A method of forming aluminum guard structures in copper interconnect structures, used to protect the copper interconnect structures from a laser write procedure, performed to an adjacent copper fuse element, has been developed. The method features forming guard structure openings in an upper level of the copper interconnect structures, in a region adjacent to a copper fuse element. Deposition and patterning of an aluminum layer result in the formation of aluminum guard structures, located in the guard structure openings. The aluminum guard structures protect the copper interconnect structures from the oxidizing and corrosive effects of oxygen, fluorine and water ions, which are generated during a laser write procedure, performed to the adjacent copper fuse element.