摘要:
A secondary battery protection circuit for controlling charge and discharge using a switching circuit to protect a secondary battery from temperature is provided. The switching circuit is configured to be provided in a charge-and-discharge path between the secondary battery and an external device. The secondary battery protection circuit includes a detection terminal configured to be electrically connected, via a resistor, to between the switching circuit and the external device. The secondary battery protection circuit includes a first terminal configured to be electrically connected to a temperature detection terminal of the external device. The secondary battery protection circuit includes a second terminal to which a temperature sensitive element is configured to be electrically connected, the temperature sensitive element having a characteristic value varying in accordance with a change in temperature of the secondary battery.
摘要:
A secondary battery protection circuit for controlling charge and discharge using a switching circuit to protect a secondary battery from temperature is provided. The switching circuit is configured to be provided in a charge-and-discharge path between the secondary battery and an external device. The secondary battery protection circuit includes a detection terminal configured to be electrically connected, via a resistor, to between the switching circuit and the external device. The secondary battery protection circuit includes a first terminal configured to be electrically connected to a temperature detection terminal of the external device. The secondary battery protection circuit includes a second terminal to which a temperature sensitive element is configured to be electrically connected, the temperature sensitive element having a characteristic value varying in accordance with a change in temperature of the secondary battery.
摘要:
A region determination circuit (60) determines whether or not each of the pixels in an image is within a region subject to correction, in which pixels having at most a predetermined brightness level appear with a frequency equal to or less than a predetermined value. An offset level generation circuit (10) generates an offset level (Offset) on the basis of the brightness of the pixels determined to be within the region subject to correction. An offset subtraction circuit (1) subtracts the offset level (Offset) from the image signal (Yi) to generate an offset image signal (Yofst). A gain generation circuit (20) generates a gain for the offset image signal (Yofst). A gain multiplication circuit (2) multiplies the offset image signal (Yofst) by the gain to generate a corrected image signal (Ya).
摘要:
There is a need for providing a battery-less integrated circuit (IC) card capable of operating in accordance with a contact usage or a non-contact usage, preventing coprocessor throughput from degrading despite a decreased clock frequency for reduced power consumption under non-contact usage, and ensuring high-speed processing under non-contact usage. A dual interface card is a battery-less IC card capable of operating in accordance with a contact usage or a non-contact usage. The dual interface card operates at a high clock under contact usage and at a low clock under non-contact usage. A targeted operation comprises a plurality of different basic operations. The dual interface card comprises a basic arithmetic circuit group. Under the contact usage, the basic arithmetic circuit group performs one basic operation of the targeted operation at one cycle. Under the non-contact usage, the basic arithmetic circuit group sequentially performs at least two basic operations of the targeted operation at one cycle.
摘要:
A bit generation apparatus includes a glitch generation circuit that generates glitch signals which include a plurality of pulses, and T-FF bit generation circuits which input the glitch signals, and based on either rising edges or falling edges of the plurality of pulses included in the glitch signals, generate a bit value of either 0 or 1. Each of the T-FF bit generation circuits generates a respective bit value based on either the parity of the number of rising edges or the parity of the number of falling edges of the plurality of pulses. As a result of employment of the T-FF bit generation circuits, circuits that are conventionally required but not essential for the glitch become unnecessary. This serves to prevent expansion in circuit scale and increase in processing time of bit generation for the bit generation circuit.
摘要:
A DC power supply apparatus comprising: a rectifying circuit including, a first rectifying portion, a second rectifying portion, a third rectifying portion and a fourth rectifying portion; a current detection portion; a first switching portion; and a second switching portion; wherein each of the first rectifying portion cooperatively operating with the first switching portion and the second rectifying portion cooperatively operating with the second switching portion is a semiconductor element which is formed by using a Schottky junction formed between silicon carbide or gallium nitride and metal and has a withstanding voltage property with respect to a voltage of an AC power supply.
摘要:
In initial generation (for example, shipping from the factory), a security device generates an identifier w specific to the security device, with the PUF technology, generates key information k (k=HF(k)) from the identifier w, generates encrypted confidential information x by encrypting (x=Enc(mk, k)) confidential information mk with the key information k, and stores the encrypted confidential information x and an authentication code h (h=HF′(k)) of the key information k, in a nonvolatile memory. In operation, the security device generates the identifier w with the PUF technology, generates the key information k from the identifier w, and decrypts the encrypted confidential information x with the key information k. At a timing where the identifier w is generated in the operation, the security device checks whether the current operating environment has largely changed from the initial generation (S311). If a change in operating environment is detected (S311→S312), the security device conducts a reset-up process (S312 to S315) of an authentication code h which is confidential information, and the encrypted confidential information x.
摘要:
A charge-controlling semiconductor integrated circuit includes a current- controlling MOS transistor which is connected between a voltage input terminal and an output terminal and controls flowing current, a substratum voltage switching circuit connected between the voltage input/output terminal and a substratum to which an input/output voltage is applied, and a voltage comparison circuit to compare the input/output voltage. The charge-controlling semiconductor integrated circuit controls the substratum voltage switching circuit based on an output of the voltage comparison circuit, and the voltage comparison circuit includes an intentional offset in a first potential direction. A level shift circuit to shift the output voltage to a potential direction opposite to the first potential direction is provided in a preceding stage of a first input terminal of the voltage comparison circuit, and the input voltage is input to a second input terminal of the voltage comparison circuit.
摘要:
A charge circuit includes a current limiting circuit configured to limit a current input from an input terminal; a first transistor connected between an output terminal of the current limiting circuit and a secondary battery; a charge control circuit configured to turn the first transistor on and off to start and stop supply of a charge current to the secondary battery; a second transistor configured to output a current proportional to the charge current flowing through the first transistor; and a charge timer configured to generate clock pulses according to the current output from the second transistor. The charge control circuit is configured to turn off the first transistor to stop the supply of the charge current to the secondary battery when the number of the clock pulses reaches a predetermined number.
摘要:
A charge controller includes a charge control circuit that, when detecting that a charging power supply is connected, controls the charging transistor to apply the charge current; a first and second control switch element connected in series between one terminal of a secondary battery and an external terminal; and a protection circuit that, when the secondary battery is over-discharged, turns off the first control switch element to stop discharge current and when deeply discharged, turns off the second control switch element. The protection circuit sends a charge inhibit signal to the charge control circuit when the secondary battery is deeply discharged, and while receiving the charge inhibit signal, the charge control circuit keeps the charging transistor off to prevent the charge current from flowing even if detecting that the charging power supply is connected.