Abstract:
The present invention provides for the identification and cloning of functional plant centromeres in Arabidopsis. This will permit construction of stably inherited plant artificial chromosomes (PLACs) which can serve as vectors for the construction of transgenic plant and animal cells. In addition, information on the structure and function of these regions will prove valuable in isolating additional centromeric and centromere related genetic elements and polypeptides from other species.
Abstract:
The invention is generally related to methods of generating plants transformed with novel autonomous mini-chromosomes. Mini-chromosomes with novel compositions and structures are used to transform plants cells which are in turn used to generate the plant. Methods for generating the plant include methods for delivering the mini-chromosome into plant cell to transform the cell, methods for selecting the transformed cell, and methods for isolating plants transformed with the mini-chromosome. Plants generated in the present invention contain novel genes introduced into their genome by integration into existing chromosomes.
Abstract:
The invention is generally related to methods of generating plants transformed with novel autonomous mini-chromosomes. Mini-chromosomes with novel compositions and structures are used to transform plants cells which are in turn used to generate the plant. Methods for generating the plant include methods for delivering the mini-chromosome into plant cell to transform the cell, methods for selecting the transformed cell, and methods for isolating plants transformed with the mini-chromosome. Plants generated in the present invention contain novel genes introduced into their genome by integration into existing chromosomes.
Abstract:
The present invention provides methods of doing business and providing services. For example, methods of increasing the revenue of crops are provided. To this end, the method includes the use of a nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and mini chromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides methods of doing business and providing services. For example, methods of increasing the revenue of crops are provided. To this end, the method includes the use of a nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and mini chromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the identification and cloning of functional plant centromeres in Arabidopsis. This will permit construction of stably inherited plant artificial chromosomes (PLACs) which can serve as vectors for the construction of transgenic plant and animal cells. In addition, information on the structure and function of these regions will prove valuable in isolating additional centromeric and centromere related genetic elements and polypeptides from other species.