Abstract:
Relocating data in a virtualized environment maintained by a hypervisor administering access to memory with a Cache Page Table (‘CPT’) and a Physical Page Table (‘PPT’), the CPT and PPT including virtual to physical mappings. Relocating data includes converting the virtual to physical mappings of the CPT to virtual to logical mappings; establishing a Logical Memory Block (‘LMB’) relocation tracker that includes logical addresses of an LMB, source physical addresses of the LMB, target physical addresses of the LMB, a translation block indicator for each relocation granule, and a pin count associated with each relocation granule; establishing a PPT entry tracker including PPT entries corresponding to the LMB to be relocated; relocating the LMB in a number of relocation granules including blocking translations to the relocation granules during relocation; and removing the logical addresses from the LMB relocation tracker.
Abstract:
Operating system-directed workload scheduling of an adjunct partition in a logically partitioned computer is selectively overridden to handle platform work requiring a Quality of Service (QoS) guarantee. Firmware may track outstanding requests for platform work for an adjunct partition, and in response to a request for platform work that requires a QoS guarantee, the firmware may assume or take over scheduling decisions for the adjunct partition from the operating system of an associated logical partition and schedule execution of the adjunct partition to ensure that the adjunct partition will be allocated sufficient execution resources to perform the platform work independent of the scheduling desires of the operating system. As a result, any platform work that potentially impacts the platform work of other adjunct partitions will not be held up as a result of an unwillingness or inability of the operating system to schedule execution of the adjunct partition.
Abstract:
Dynamic control of memory affinity is provided for a shared memory logical partition within a shared memory partition data processing system having a plurality of nodes. The memory affinity control approach includes: determining one or more home node assignments for the shared memory logical partition, with each assigned home node being one node of the plurality of nodes of the system; determining a desired physical page level per node for the shared memory logical partition; and allowing the shared memory partition to run and using the home node assignment(s) and its desired physical page level(s) in the dispatching of tasks to physical processors in the nodes and in hypervisor page memory management to dynamically control memory affinity of the shared memory logical partition in the data processing system.
Abstract:
Hypervisor page fault processing logic is provided for a shared memory partition data processing system. The logic, responsive to an executing virtual processor of the shared memory partition data processing system encountering a hypervisor page fault, allocates an input/output (I/O) paging request to the virtual processor from an I/O paging request pool and increments an outstanding I/O paging request count for the virtual processor. A determination is then made whether the outstanding I/O paging request count for the virtual processor is at a predefined threshold, and if not, the logic places the virtual processor in a wait state with interrupt wake-up reasons enabled based on the virtual processor's state, otherwise, it places the virtual processor in a wait state with interrupt wake-up reasons disabled.
Abstract:
Transparent hypervisor pinning of critical memory areas is provided for a shared memory partition data processing system. The transparent hypervisor pinning includes receiving at a hypervisor a hypervisor call initiated by a logical partition to register a logical memory area of the logical partition with the hypervisor. Responsive to this hypervisor call, the hypervisor transparently determines whether the logical memory is a critical memory area for access by the hypervisor. If the logical memory area is a critical memory area, then the hypervisor automatically pins the logical memory area to physical memory of the shared memory partition data processing system, thereby ensuring that the memory area will not be paged-out from physical memory to external storage, and thus ensuring availability of the logic memory area to the hypervisor.
Abstract:
A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.
Abstract:
A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.
Abstract:
The method of making the diaphragm includes pressing on the front face of a film at spaced apart areas to deform it progressively into a series of closely-spaced generally U-shaped projections. A manufacturing device presses the sides of the projections inwardly to rigidify them. The transducer magnet assembly includes a series of elongated magnet pole-piece strips which confine magnets and are arranged in parallel spaced-apart rows with the ends thereof fitted into transverse elongated grooves extending within a pair of elongated cross-piece end members. The driver is fixed together in a precise manner by flowing an adhesive material into the grooves, and then by allowing such material to harden.
Abstract:
The transducer diaphragm includes a folded sheet of thin film material, having printed circuit conductors formed thereon in a Greek or serpentine pattern. The Greek pattern includes an odd number of spaced, parallel, printed conductor lines formed into longitudinal and transverse groups, with return conductors extending around the perimeter of the pattern to complete loops of a voice coil. The sheet is folded to form a plurality of rearwardly extending projections, with the folding being along the center lines of each of the longitudinal groups. In the preferred form of the invention, each one of the projections is generally channel-shaped throughout its length, and has a bight portion interconnecting a pair of leg portions, with a longitudinal conductor in the center of the bight and other conductors in the longitudinal group opposite each other on the leg portions.
Abstract:
The method of making the diaphragm includes pressing on the front face of a film at spaced apart areas to deform it progressively into a series of closely-spaced generally U-shaped projections. A manufacturing device presses the sides of the projections inwardly to rigidify them. The transducer magnet assembly includes a series of elongated magnet pole-piece strips which confine magnets and are arranged in parallel spaced-apart rows with the ends thereof fitted into transverse elongated grooves extending within a pair of elongated cross-piece end members. The driver is fixed together in a precise manner by flowing an adhesive material into the grooves, and then by allowing such material to harden.