Abstract:
Embodiments herein relate to a method in a user equipment for handling control information in a radio communications network. The user equipment is served in a cell controlled by a radio network node and is of a second type of user equipments. The user equipment monitors a search space for control information of a physical data control channel, PDCCH, which search space is associated with the second type of user equipments. The PDCCH comprises at least one control channel element that comprises resource elements at least partly comprised in a second region of resource elements. The resource elements of the second region are only allowed to be scheduled for control information to user equipments of the second type. The at least one CCE is defined in relation to a CCE of a first region of resource elements, which resource elements of the first region are allowed to be scheduled for control information to user equipments of a first type. The user equipment detects control information within the monitored search space, and uses the detected control information for communicating with the radio network node.
Abstract:
A technique for encoding downlink Hybrid Automatic Repeat Request, HARQ, feedback information in a mobile station supporting aggregated component carriers is provided. A method implementation of this technique comprises the steps of obtaining (302) first HARQ feed-back indicators providing information regarding receipt of Physical Downlink Control Channels, PDCCH, for activated component carriers, obtaining (304) second HARQ feedback indicators providing information regarding decoding of Physical Downlink Shared Channels, PDSCH, codewords carried by the component carriers, encoding (306) the first HARQ feedback indicators into a first coded part, and encoding (308) the first HARQ feedback indicators into a second coded part, wherein the first and the second HARQ feedback indicators are encoded separate from each other.
Abstract:
Example embodiments presented herein are directed towards a base station and method therein, for configuring control timing to and from a user equipment in a multiple component cell communications network. Example embodiments presented herein are also directed towards a user equipment and method therein, for configuration of control timing for a user equipment in a multiple component cell communications network.
Abstract:
Embodiments herein disclose a method in a user equipment (10) for communicating with a radio network node (12, 12′) in a radio communications network, which user equipment (10) is served by the radio network node (12, 12′). The user equipment receives first information from the radio network node (12, 12′) over a control channel, which first information comprises a pointer to which scheduling assignment element for the user equipment (10) to use. The scheduling assignment element is comprised in a set of scheduling assignments stored at the user equipment (10). The user equipment communicates data with the radio network node (12, 12′) using second information in the scheduling assignment element indicated by the pointer.
Abstract:
Methods and devices for managing a cellular communication system (1) and mobile terminals (40) are presented. A collective positioning measurement order (50) is issued to a multitude of mobile terminals (40) in a first cell (10) of the cellular communication system (1). This issuing is preferably performed intermittently at a multitude of times according to a predetermined rule. Each mobile terminal (40) receives information concerning a collective positioning measurement order. The mobile terminal (40) performs a positioning operation, typically a positioning measurement on a ranging signal (51, 52) or transmission of a ranging signal (53), preferably intermittently at a multitude of times, according to a predetermined rule based on the information concerning the collective positioning measurement order. An updating of a storage with positioning data can preferably be obtained. In terrestrially based positioning systems, signal resources dedicated to positioning measurement can be reserved in the cellular communication system.
Abstract:
The present invention relates generally to methods and arrangements for positioning in a wireless communications system, such as LTE. In particular, the present invention relates to improving positioning accuracy. The invention provides methods and arrangements for scheduling positioning subframes, i.e. low interference subframes, for allowing aligning of positioning subframes across a number of cells in order to reduce the interference from data symbols of cells in the neighborhood of a cell serving the UE that is performing positioning measurements. A time instance during which transmission of the positioning subframes is to occur in a wireless communications network is selected. The base stations in the wireless communications network are informed about the selected time instance, whereupon the base stations schedule and transmit the positioning subframes based on the selected time instance, whereby the positioning subframes are aligned throughout the network.
Abstract:
The embodiments herein relate to a method in a base station for communicating with a user equipment in the communication network. The base station is configured to communicate with the user equipment according to a selectable of at least two user equipment categories. Based on information about a selected user equipment category, the base station determines a first number of maximum transmission layers supported by the base station. The base station communicates with the user equipment according to up to the determined first number of maximum transmission layers and according to the selected user equipment category.
Abstract:
A user equipment, in a cellular telecommunication system having a plurality of downlink physical channels, detects radio link problems using a subset of said physical channels, where said subset is dynamically adjustable depending upon which channels are available at a particular instant.
Abstract:
Embodiments herein include a method in a user equipment (UE) for transmitting uplink control information in time slots of a subframe over a radio channel to a radio base station. The uplink control information is comprised in a block of bits.The UE maps the block of bits to a sequence of complex valued modulation symbols. The UE block spreads the sequence across Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing (DFTS-OFDM) symbols. This is performed by applying a spreading sequence to the sequence of complex valued modulation symbols, to achieve a block spread sequence of complex valued modulation symbols. The UE further transforms the block-spread sequence, per DFTS-OFDM symbol. This is performed by applying a matrix that depends on a DFTS-OFDM symbol index and/or slot index to the block-spread sequence. The UE also transmits the block spread sequence, as transformed, over the radio channel to the radio base station.
Abstract:
A method of wirelessly transmitting control information includes generating control information comprising a plurality of control bits and encoding the control bits using a block code that outputs an encoded bit sequence comprising encoded bits b(0), b(1), . . . , b(19). The control bits are encoded using the block code by generating a linear combination of a plurality of basis sequences. The method also includes dividing the encoded bits into a first group and a second group. The first group includes the encoded bits {b(0), b(1), b(5), b(6), b(8), b(11), b(12), b(14), b(17), b(19)} and the second group includes the encoded bits {b(2), b(3), b(4), b(7), b(9), b(10), b(13), b(15), b(16), b(18)}. Additionally, the method includes transmitting the first group of encoded bits on a first set of carriers and transmitting the second group of encoded bits on a second set of carriers. The second set of carriers have different frequencies from the first set of carriers.