Abstract:
Provided is a method of forming a fine pattern of a polymer thin film using a phenomenon that another material having a large difference in surface energy in comparison with a polymer thin film pattern is dewetted on the polymer thin film pattern. Two polymer materials having a large difference in surface energy can be applied to readily and conveniently form a fine pattern of a polymer thin film of micrometer or sub-micrometer grade.
Abstract:
Provided is a 2-terminal semiconductor device that uses an abrupt MIT semiconductor material layer. The 2-terminal semiconductor device includes a first electrode layer, an abrupt MIT semiconductor organic or inorganic material layer having an energy gap less than 2eV and holes in a hole level disposed on the first electrode layer, and a second electrode layer disposed on the abrupt MIT semiconductor organic or inorganic material layer. An abrupt MIT is generated in the abrupt MIT semiconductor material layer by a field applied between the first electrode layer and the second electrode layer.
Abstract:
A current-jump-control circuit including an abrupt metal-insulator phase transition device is proposed, and includes a source, the abrupt metal-insulator phase transition device and a resistive element. The abrupt metal-insulator phase transition device includes first and second electrodes connected to the source, and shows an abrupt metal-insulator phase transition characteristic of a current jump when an electric field is applied between the first electrode and the second electrode. The resistive element is connected between the source and the abrupt metal-insulator phase transition device to control a jump current flowing through the abrupt metal-insulator phase transition device. According to the above current control circuit, the abrupt metal-insulator phase transition device can be prevented from being failed due to a large amount of current and thus the current-jump-control circuit can be applied in various application fields.
Abstract:
Provided is a method of forming a fine pattern of a polymer thin film using a phenomenon that another material having a large difference in surface energy in comparison with a polymer thin film pattern is dewetted on the polymer thin film pattern. Two polymer materials having a large difference in surface energy can be applied to readily and conveniently form a fine pattern of a polymer thin film of micrometer or sub-micrometer grade.
Abstract:
An organic thin film transistor (OTFT), a method of manufacturing the same, and a biosensor using the OTFT are provided. The OTFT includes a gate electrode, a gate insulating layer, source and drain electrodes, and an organic semiconductor layer disposed on a substrate and further includes an interface layer formed between the gate insulating layer and the organic semiconductor layer by a sol-gel process. The gate insulating layer is formed of an organic polymer, and the interface layer is formed of an inorganic material. The OTFT employs the interface layer interposed between the gate insulating layer and the organic semiconductor layer so that the gate insulating layer can be protected from the exterior and adhesion of the gate insulating layer with the organic semiconductor layer can be improved, thereby increasing driving stability. Also, since the OTFT can use a plastic substrate, the manufacture of the OTFT is inexpensive so that the OTFT can be used as a disposable biosensor.
Abstract:
An apparatus and method for generating a terahertz (THz) wave are provided. The apparatus comprises: an fiber optic probe injecting an optical wave transmitted through an optical fiber into a device under test (DUT); a driving oscillator generating and injecting an electrical wave into the DUT; and the device under test (DUT) generating a THz wave using the produced optical and electrical waves.
Abstract:
Provided is a lithium secondary battery including a discharge unit capable of delaying or preventing a battery explosion. The lithium secondary battery includes a discharge unit disposed parallel to a battery body. The discharge unit includes a first electrode connected to a positive electrode of the battery body, a second electrode connected to a negative electrode of the battery body, and a discharge material film, disposed between the first electrode and the second electrode, inducing a abrupt discharge above a predetermined temperature. The discharge material film, e.g., a abrupt metal-insulator transition (MIT) material film can induce a abrupt discharge, thereby preventing or delaying a battery explosion.
Abstract:
Provided are an electrical and/or electronic system protecting circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove high-frequency noise with a voltage greater than a rated standard voltage received via a power line or a signal line of an electrical and/or electronic system, and the electrical and/or electronic system including the electrical and/or electronic system protecting circuit. The abrupt MIT device of the electrical and/or electronic system protecting circuit abrupt is connected in parallel to the electrical and/or electronic system to be protected from the noise. The electrical and/or electronic system protecting circuit bypasses toward the abrupt MIT device most of the noise current generated when the voltage greater than the rated standard voltage is applied, thereby protecting the electrical and/or electronic system.
Abstract:
The abrupt metal-insulator transition device includes: an abrupt metal insulator transition material layer including an energy gap of less than or equal to 2 eV and holes within a hole level; and two electrodes contacting the abrupt metal-insulator transition material layer. Here, each of the two electrodes is formed by thermally treating a stack layer of a first layer formed on the abrupt metal-insulator transition material layer and comprising Ni or Cr, a second layer formed on the first layer and comprising In, a third layer formed on the second layer and comprising Mo or W, and a fourth layer formed on the third layer and comprising Au.
Abstract:
Provided are a nitride semiconductor field effect transistor (FET) and a method of fabricating the nitride semiconductor FET. The nitride semiconductor FET includes a first semiconductor layer, a second semiconductor layer, a two-dimensional electron gas layer, a T-shaped gate, and a source/drain ohmic electrode. The first semiconductor layer is formed on a substrate. The second semiconductor layer is formed on the first semiconductor layer and has a bandgap energy that is different from the bandgap energy of the first semiconductor layer. The two-dimensional electron gas layer is formed of a hetero-junction of the first semiconductor layer and the second semiconductor layer in an interfacial area between the first semiconductor layer and the second semiconductor layer. The T-shaped gate is formed on the second semiconductor layer and is connected to the second semiconductor layer. The source/drain ohmic electrode is formed by sequentially forming an Ni (or Cr) layer, an In layer, an Mo (or W) layer, and an Au layer at both sides of the second semiconductor layer and on the first semiconductor layer.