DENDRITE GROWTH CONTROL CIRCUIT
    1.
    发明申请

    公开(公告)号:US20060110909A1

    公开(公告)日:2006-05-25

    申请号:US10904680

    申请日:2004-11-23

    IPC分类号: H01L21/4763

    CPC分类号: H01L21/76838

    摘要: A circuit is provided which prevents dendrite formation on interconnects during semiconductor device processing due to a dendrite-forming current. The circuit includes a switch located in at least one of the dendrite-forming current paths. The switch is configured to be open or in the “off” state during processing, and is configured to be closed or in the “on” state after processing to allow proper functioning of the semiconductor device. The switch may include an nFET or pFET, depending on the environment in which it is used to control or prevent dendrite formation. The switch may be configured to change to the “closed” state when an input signal is provided during operation of the fabricated semiconductor device.

    MOS VARACTOR USING ISOLATION WELL
    2.
    发明申请
    MOS VARACTOR USING ISOLATION WELL 有权
    使用隔离的MOS变压器

    公开(公告)号:US20060043454A1

    公开(公告)日:2006-03-02

    申请号:US10711144

    申请日:2004-08-27

    IPC分类号: H01L29/94 H01L21/20

    CPC分类号: H01L29/93 H01L29/94

    摘要: The present invention provides a varactor that has increased tunability and a high quality factor Q as well as a method of fabricating the varactor. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes providing a structure that includes a semiconductor substrate of a first conductivity type and optionally a subcollector or isolation well (i.e., doped region) of a second conductivity type located below an upper region of the substrate, the first conductivity type is different from said second conductivity type. Next, a plurality of isolation regions are formed in the upper region of the substrate and then a well region is formed in the upper region of the substrate. In some cases, the doped region is formed at this point of the inventive process. The well region includes outer well regions of the second conductivity type and an inner well region of the first conductivity type. Each well of said well region is separated at an upper surface by an isolation region. A field effect transistor having at least a gate conductor of the first conductivity type is then formed above the inner well region.

    摘要翻译: 本发明提供一种具有增加的可调性和高品质因数Q的变容二极管以及制造变容二极管的方法。 本发明的方法可以集成到常规的CMOS处理方案中,或者被整合到常规的BiCMOS处理方案中。 该方法包括提供包括第一导电类型的半导体衬底和位于衬底的上部区域下方的第二导电类型的子集电极或隔离阱(即,掺杂区)的结构,第一导电类型不同于 所述第二导电类型。 接下来,在基板的上部区域形成多个隔离区域,然后在基板的上部区域形成阱区域。 在一些情况下,在本发明方法的这一点形成掺杂区域。 阱区包括第二导电类型的外阱区和第一导电类型的内阱区。 所述阱区的每个阱在上表面被隔离区分开。 然后形成至少具有第一导电类型的栅极导体的场效应晶体管,并在内部阱区域的上方形成。

    DENDRITE GROWTH CONTROL CIRCUIT
    4.
    发明申请

    公开(公告)号:US20060264026A1

    公开(公告)日:2006-11-23

    申请号:US11461623

    申请日:2006-08-01

    IPC分类号: H01L21/4763

    CPC分类号: H01L21/76838

    摘要: A circuit is provided which prevents dendrite formation on interconnects during semiconductor device processing due to a dendrite-forming current. The circuit includes a switch located in at least one of the dendrite-forming current paths. The switch is configured to be open or in the “off” state during processing, and is configured to be closed or in the “on” state after processing to allow proper functioning of the semiconductor device. The switch may include an nFET or pFET, depending on the environment in which it is used to control or prevent dendrite formation. The switch may be configured to change to the “closed” state when an input signal is provided during operation of the fabricated semiconductor device.