摘要:
Method and Apparatus for Processing Shared Sub-packets in a Communication System are disclosed. A communication system providing both voice and data services allows for a plurality of subscriber station to share a data sent in a unit of a forward traffic channel. To provide information required by the subscriber stations to determine that a unit of the forward traffic channel is shared, and to correctly decode the data, different control channel structures are described. Additionally, the control channel structures provides for more efficient signaling of code channel assignment.
摘要:
A remote station, for a wireless communication system, includes a receiver configured to receive on a first downlink a synchronization control channel on a first carrier frequency and on a second downlink a shared physical channel on a second carrier frequency different than the first carrier frequency. The shared physical channel includes a first physical shared channel having a unicast signal and a second physical shared channel having a multicast or broadcast signal, the unicast signal being multiplexed in time with the multicast or broadcast signal. The remote station includes a control processor configured to generate an acknowledgement signal on an uplink based on the unicast signal.
摘要:
The present invention describes a spread spectrum communication system wherein the frequency of carriers and the code channels of the carriers or both for transmission to a given remote station user vary in time. This provides for a direct sequence spectrum communications system which changes frequency or code channel according to a predetermined pattern. The code channels and frequencies can be determined in accordance with a deterministic function or based upon a subset of the data to be transmitted. A receiver structure is also described for receiving the same.
摘要:
Method and apparatus for adjusting the transmission power of base stations in simultaneous communication with a mobile station. The methods described provide for the transmission power of the base stations to be aligned. In the first exemplary embodiment, the transmitters are attached to a separate control unit through communication links. The control unit then derives the most likely command stream and send that to the base stations. In the second exemplary embodiment, the control unit periodically receives the final or average transmit level in a period and an aggregate quality measure for the feedback during a period from each of the transmitters. The control unit determines the aligned power level and transmits a message indicative of the aligned power level to the transmitters.
摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.
摘要:
A wireless telecommunications system includes a base station, a plurality of remote stations, a first channel for general page messages containing paging information and broadcast databurst message references, and an auxiliary channel for broadcast databurst notification indicators for the purpose of increasing standby time in remote stations configured to receive broadcast databurst messages.
摘要:
Systems and methods for scheduling data transmissions in a wireless communication system using scheduling requests and grants. In one embodiment, a wireless communication system has a base station and one or more mobile stations coupled by a wireless link having forward- and reverse-link channels. The base station is configured to receive requests from the mobile stations, to process the requests independently of a base station controller, to allocate communication link resources among the mobile stations, and, if necessary, to transmit one or more grants to the mobile stations in accordance with the allocation of communication link resources. Each mobile station is configured to transmit data to the base station in accordance with any grants received from the base station.
摘要:
A mobile station for wireless communication includes a control processor configured to generate a message for transmission on a reverse signaling channel, the message including a Station Class Mark field having a plurality of bits, a portion of the Station Class Mark field indicating that the mobile station is uniquely identified by a Mobile Station Equipment Identifier.
摘要:
An apparatus, system, and method efficiently manage reverse link communication in a communication system having geographically distributed base stations. Coupled load information is exchanged between base stations allowing a base station to determine an appropriate allocation of reverse link channel resources to mobile stations served by the base station. Since the allocation of reverse link channels resources are controlled directly by the base station, delays due to communications with a central controller are eliminated. As a result, adverse effects of load scheduling based on obsolete reverse channel information are minimized.
摘要:
Techniques for synchronization of stored service parameters are disclosed. In one aspect, a configuration identifier is transmitted from a mobile station to a base station, and compared with an identifier generated in the base station. If the identifiers match, the configuration is used for communication. In another aspect, the identifier is generated by selecting an identifier associated with a configuration from a configuration table. In yet another aspect, the identifier is generated by computing a cyclic redundancy check (CRC) of the configuration. Various other aspects are also presented. These aspects have the benefit of preventing attempted use of unsynchronized stored service parameters and associated call setup failures and subsequent renegotiation, with the net effect of reducing call setup time and more efficient use of system resources.