Abstract:
When a drive shaft (37) is driven while the operation of an engine (36) is stopped, the rotation of an input-side rotor (28) is restricted by the engagement of a brake. Further, on the basis of the temperature Temp_SR of a brush (96) acquired by a temperature sensor (97), the distribution of torque Tcoup acting between the input-side rotor (28) and the first output-side rotor (18) and torque Tmg acting between the stator (16) and the second output-side rotor (19) is controlled. Consequently, drive performance when the drive shaft (37) is driven while the operation of the engine (36) is stopped is improved while local overheating of a slip ring (95) is prevented.
Abstract:
A rotational difference is generated between a first and a second rotor and a third rotor, which causes an induced current to flow in a first rotor winding. This causes a torque to act between the first rotor and the third rotor. The rotary magnetic field generated by the induced current flowing through a second rotor winding interacts with a second stator, which in turn generates an induced electromotive force in a second stator winding. The induced electromotive force is applied via a phase adjustment circuit to a first stator winding, which generates a rotary magnetic field and causes a torque to act between the first stator and the third rotor. The rotary magnetic field generated by the second rotor winding and the induced current flowing in the second stator winding causes a torque to act between the second stator and the second rotor.
Abstract:
When a drive shaft (37) is driven while the operation of an engine (36) is stopped, the rotation of an input-side rotor (28) is restricted by the engagement of a brake. Further, on the basis of the temperature Temp_SR of a brush (96) acquired by a temperature sensor (97), the distribution of torque Tcoup acting between the input-side rotor (28) and the first output-side rotor (18) and torque Tmg acting between the stator (16) and the second output-side rotor (19) is controlled. Consequently, drive performance when the drive shaft (37) is driven while the operation of the engine (36) is stopped is improved while local overheating of a slip ring (95) is prevented.
Abstract:
A drive unit for a vehicle includes: an engine (2); a compound motor (3) having a first rotor and a second rotor that are differentially rotatable with each other; and an automatic transmission (4A) that delivers power output of the engine (2), which is input via the compound motor (3), to an output shaft (33), in which the first rotor is connected to an input side of a gear pair that corresponds to an even shift speed and the second rotor is connected to an input side of a gear pair that corresponds to an odd shift speed.
Abstract:
Provided is a compound motor (14) comprising a magnet rotor (19) supported by bearings (B3, B4) in a rotatable manner, a winding rotor (20) supported by bearings (B5, B6) in a rotatable manner relative to the magnet rotor (19) at the inner side of the magnet rotor (19) and having rotor winding units (20b), and slip ring mechanisms (25). A space is formed in the inner circumference of the winding rotor (20). At least a part of the slip ring mechanisms (25) is arranged in the space of the inner circumference of the winding rotor (20). The bearings (B3 to B6) include bearings (B3, B6), the internal diameter of each is larger than the size of slip ring mechanisms (25) with respect to the radial direction. The bearings (B3, B6) are arranged outside the slip ring mechanisms (25) with respect to the radial direction.
Abstract:
During an inertial energy storage operation, electric power conversion at an inverter is controlled such that a direct current electric power from an electric power storage device is converted into an alternating current by the inverter so as to be supplied to stator windings, such that torque in the direction of engine rotation is applied to an output side rotor from a stator to rotatively drive the output side rotor in a state where power transmission from the output side rotor to a drive axle is stopped. During a cranking operation after the inertial energy storage operation, the electric power conversion at an inverter is controlled to permit application of the alternating current to rotor windings, such that a torque in the direction of engine rotation is applied to an input side rotor from the output side rotor, thereby rotatively driving an input side rotor to crank the engine.
Abstract:
Disclosed are a cumulative hair-dyeing temporary hairdye comprising 0.01 to 3% by weight of an acid dye as a colorant, 0.1 to 10% by weight of a nonionic or anionic silicone base resin, 3 to 20% by weight of a hair-dyeing aid, 30 to 80% by weight of a lower alcohol and 5 to 50% by-weight of water and having a pH of 2 to 5 and a viscosity of 100 mPa·s or less and a production process for a cumulative hair-dyeing temporary hairdye, wherein the respective components are blended in such an order that at least a nonionic or anionic silicone base resin and a lower alcohol are mixed to prepare a vehicle, and then the other components are blended therewith and stirred.
Abstract:
Provided is a compound motor (14) comprising a magnet rotor (19) supported by bearings (B3, B4) in a rotatable manner, a winding rotor (20) supported by bearings (B5, B6) in a rotatable manner relative to the magnet rotor (19) at the inner side of the magnet rotor (19) and having rotor winding units (20b), and slip ring mechanisms (25). A space is formed in the inner circumference of the winding rotor (20). At least a part of the slip ring mechanisms (25) is arranged in the space of the inner circumference of the winding rotor (20). The bearings (B3 to B6) include bearings (B3, B6), the internal diameter of each is larger than the size of slip ring mechanisms (25) with respect to the radial direction. The bearings (B3, B6) are arranged outside the slip ring mechanisms (25) with respect to the radial direction.
Abstract:
A rotational difference is generated between a first and a second rotor and a third rotor, which causes an induced current to flow in a first rotor winding. This causes a torque to act between the first rotor and the third rotor. The rotary magnetic field generated by the induced current flowing through a second rotor winding interacts with a second stator, which in turn generates an induced electromotive force in a second stator winding. The induced electromotive force is applied via a phase adjustment circuit to a first stator winding, which generates a rotary magnetic field and causes a torque to act between the first stator and the third rotor. The rotary magnetic field generated by the second rotor winding and the induced current flowing in the second stator winding causes a torque to act between the second stator and the second rotor.
Abstract:
An applicator of application substances, which can be repeatedly used and can be mounted on various containers, is provided. An applicator 10 comprising: an application surface 11 to be in contact with a target application surface and a support surface 13 to be in contact with a finger being formed as integrated front and back surfaces; a mounting port 14 matching an opening of an application substance container 20 for housing an application substance; a discharge port 12 being opened in the application surface 11; and a flow path 15 guiding the application substance from the mounting port to the discharge port 12, penetrating between the application surface 11 and the support surface 13.