摘要:
An object is to provide a photoelectric conversion device which has little loss of light absorption in a window layer and has high conversion efficiency. A photoelectric conversion device including a crystalline silicon substrate having n-type conductivity and a light-transmitting semiconductor layer having p-type conductivity between a pair of electrodes is formed. In the photoelectric conversion device, a p-n junction is formed between the crystalline silicon substrate and the light-transmitting semiconductor layer, and the light-transmitting semiconductor layer serves as a window layer. The light-transmitting semiconductor layer includes an organic compound and an inorganic compound. As the organic compound and the inorganic compound, a material having a high hole-transport property and a transition metal oxide having an electron-accepting property are respectively used.
摘要:
A photoelectric conversion device has a structure that includes a first amorphous silicon layer and a second amorphous silicon layer that are in contact with a single crystalline silicon substrate, and a first microcrystalline silicon layer with one conductivity type and a second microcrystalline silicon layer with a conductivity type that is opposite the one conductivity type that are in contact with the first and second amorphous silicon layers, respectively. The first and second microcrystalline silicon layers are formed using a plasma CVD apparatus that is suitable for high pressure film formation conditions.
摘要:
The purpose is manufacturing a photoelectric conversion device with excellent photoelectric conversion characteristics typified by a solar cell with effective use of a silicon material. A single crystal silicon layer is irradiated with a laser beam through an optical modulator to form an uneven structure on a surface thereof. The single crystal silicon layer is obtained in the following manner; an embrittlement layer is formed in a single crystal silicon substrate; one surface of a supporting substrate and one surface of an insulating layer formed over the single crystal silicon substrate are disposed to be in contact and bonded; heat treatment is performed; and the single crystal silicon layer is formed over the supporting substrate by separating part of the single crystal silicon substrate fixed to the supporting substrate along the embrittlement layer or a periphery of the embrittlement layer. Then, irradiation with a laser beam is performed on a separation surface of the single crystal silicon layer through an optical modulator which modulates light intensity regularly, and unevenness is formed on the surface. Due to the unevenness, reflection of incident light is reduced and absorptance with respect to light is improved, therefore, photoelectric conversion efficiency of the photoelectric conversion device is improved.
摘要:
A fragile layer is formed in a region at a depth of less than 1000 nm from one surface of a single crystal semiconductor substrate, and a first impurity semiconductor layer and a first electrode are formed at the one surface side. After bonding the first electrode and a supporting substrate, the single crystal semiconductor substrate is separated using the fragile layer or the vicinity as a separation plane, thereby forming a first single crystal semiconductor layer over the supporting substrate. An amorphous semiconductor layer is formed on the first single crystal semiconductor layer, and a second single crystal semiconductor layer is formed by heat treatment for solid phase growth of the amorphous semiconductor layer. A second impurity semiconductor layer having a conductivity type opposite to that of the first impurity semiconductor layer and a second electrode are formed over the second single crystal semiconductor layer.
摘要:
An SOI substrate is manufactured by a method in which a first insulating film is formed over a first substrate over which a plurality of first single crystal semiconductor films is formed; the first insulating film is planarized; heat treatment is performed on a single crystal semiconductor substrate attached to the first insulating film; a second single crystal semiconductor film is formed; a third single crystal semiconductor film is formed using the first single crystal semiconductor films and the second single crystal semiconductor films as seed layers; a fragile layer is formed by introducing ions into the third single crystal semiconductor film; a second insulating film is formed over the third single crystal semiconductor film; heat treatment is performed on a second substrate superposed on the second insulating film; and a part of the third single crystal semiconductor film is fixed to the second substrate.
摘要:
To provide a high-performance semiconductor device using an SOI substrate in which a substrate having low heat resistance is used as a base substrate, to provide a high-performance semiconductor device without performing mechanical polishing, and to provide an electronic device using the semiconductor device, planarity of a semiconductor layer is improved and defects in the semiconductor layer are reduced by laser beam irradiation. Accordingly, a high-performance semiconductor device can be provided without performing mechanical polishing. In addition, a semiconductor device is manufactured using a region having the most excellent characteristics in a region irradiated with the laser beam. Specifically, instead of the semiconductor layer in a region which is irradiated with the edge portion of the laser beam, the semiconductor layer in a region which is irradiated with portions of the laser beam except the edge portion is used as a semiconductor element. Accordingly, performance of the semiconductor device can be greatly improved. Moreover, an excellent electronic device can be provided.
摘要:
A photoelectric conversion device in photoelectric conversion in a light-absorption region in a crystalline silicon substrate is efficiently performed is provided. In the photoelectric conversion device, a light-transmitting conductive film which has a high effect of passivation of defects on a silicon surface and improves the reflectance on a back electrode side is provided between the back electrode and the crystalline silicon substrate, The light-transmitting conductive film includes an organic compound and an inorganic compound. The organic compound includes 4-phenyl-4′-(9-phenylfluoren-9-yl)triphenylamine. The inorganic compound includes an oxide of a metal belonging to any of Groups 4 to 8 of the periodic table.
摘要:
It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10−7/° C. to 38×10−7/° C., preferably 6×10−7/° C. to 31.8×10−7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is −500 N/m to +50 N/m, preferably −150 N/m to 0 N/m after the heating step.
摘要:
A single crystal semiconductor substrate is irradiated with ions that are generated by exciting a hydrogen gas and are accelerated with an ion doping apparatus, thereby forming a damaged region that contains a large amount of hydrogen. After the single crystal semiconductor substrate and a supporting substrate are bonded, the single crystal semiconductor substrate is heated to be separated along the damaged region. While a single crystal semiconductor layer separated from the single crystal semiconductor substrate is heated, this single crystal semiconductor layer is irradiated with a laser beam. The single crystal semiconductor layer undergoes re-single-crystallization by being melted through laser beam irradiation, thereby recovering its crystallinity and planarizing the surface of the single crystal semiconductor layer.
摘要:
A semiconductor substrate is provided by a method suitable for mass production. Further, a semiconductor substrate having an excellent characteristic with effective use of resources is provided. A single crystal semiconductor substrate is irradiated with ions to form a damaged region in the single crystal semiconductor substrate; an insulating layer is formed over the single crystal semiconductor substrate; the insulating layer and a supporting substrate are bonded to each other; a first single crystal semiconductor layer is formed over the supporting substrate by partially separating the single crystal semiconductor substrate at the damaged region; a first semiconductor layer is formed over the first single crystal semiconductor layer; a second semiconductor layer is formed over the first semiconductor layer with a different condition from that used for forming the first semiconductor layer; a second single crystal semiconductor layer is formed by improving crystallinity of the first and the second semiconductor layers.