Abstract:
A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and lens.
Abstract:
A method for utilizing a delay lock loop to cover a wide delay range. In one method embodiment, the present invention receives a reference clock pulse. Next, in a first loop, a phase variation is adjusted between the feedback clock pulse and the reference clock pulse utilizing a coarse delay in conjunction with a first fine delay. The resulting pulse is then output to a chip delay and then sent back to the delay lock loop as a feedback clock pulse. Additionally, in a second loop, the phase variation is adjusted between said second loop and said first loop utilizing the coarse delay in conjunction with a second fine delay, wherein the second fine delay has a delay range for adjusting the phase variation which overlaps the delay range of the first fine delay of the first loop.
Abstract:
A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and lens.
Abstract:
A semiconductor device comprising an integrated circuit die and an electronic component mounted to the integrated circuit dies wherein the electronic component comprises a light emitting active area arranged to emit light.
Abstract:
A fiber optic component includes a body having at least one receptacle configured to receive a fiber optic connector, a shutter base mounted to the body at a mounting location adjacent to the at least one receptacle, and a first shutter connected to the shutter base by a first hinge. The first shutter, first hinge and shutter base are unitarily formed, and the first shutter is shiftable from a first position biased against the body and covering the at least one receptacle to a second position biased to an angularly spaced position relative to the first position.
Abstract:
An apparatus comprising a first circuit, a second circuit, and an output circuit. The first circuit may be configured to generate a first digital output in response to (i) a reference input and (ii) a feedback input. The second circuit may be configured to generate a second digital output in response to (i) the first digital output and (ii) a second feedback input. The output circuit may be configured to generate a third output in response to a data input, wherein an output impedance of the output circuit is adjusted in response to (i) the first digital output and (ii) the second digital output.
Abstract:
A fiber optic component includes a body having at least one receptacle configured to receive a fiber optic connector, a shutter base mounted to the body at a mounting location adjacent to the at least one receptacle, and a first shutter connected to the shutter base by a first hinge. The first shutter, first hinge and shutter base are unitarily formed, and the first shutter is shiftable from a first position biased against the body and covering the at least one receptacle to a second position biased to an angularly spaced position relative to the first position.
Abstract:
A modular floor is disclosed having a number of interlocking modular elements. Interlocking elements of the modular elements have surfaces which mate to prevent movement in planar directions. Gripping surfaces are provided to prevent slipping or movement of the modular elements with respect to a subfloor upon which the modular elements are temporarily placed. This modular floor is quickly and easily assembled and disassembled. The locking elements and the support element are easily attached to the modular elements via rivets screws or similar fasteners.
Abstract:
The apparatus includes a diode laser and a current source interconnected with the diode laser. Two independent circuits in the current source are configured to limit current flowing through the diode laser. A first current limiter circuit configured to limit a current output from the current source to an anode of the diode laser, and an independent second current limiter circuit configured to limit a current return from a cathode of the diode laser to the current source so that laser output power does not exceed a specified maximum regardless of a single fault in either the first or second current limiter circuits.
Abstract:
One embodiment relates to an optical navigation apparatus which provides fault-tolerant limitation of laser output power. The apparatus includes a diode laser and a current source interconnected with the diode laser. Two independent circuits in the current source are configured to limit current flowing through the diode laser. Another embodiment relates to a method of providing fault-tolerant limitation of laser output power in an optical navigation apparatus. A first digital current limit value is converted to a first analog signal, and the first analog signal is used to limit an electrical current from a power supply connection to an anode of a diode laser. A second digital current limit value is converted to a second analog signal, and the second analog signal is used to limit an electrical current from a cathode of the diode laser to a ground connection. Other embodiments are also disclosed.