Abstract:
The invention relates to a method and a device for coating substrates in a vacuum, in which a plasma is generated from a target using a laser beam and ionized particles of the plasma are deposited on the substrate in the form of a layer, inert reactive gas or a gas mixture being supplied. The solution according to the invention is intended to provide a possible way of supplying gases or gas mixtures in a locally and temporally defined manner. According to the invention, this object is achieved by the fact that the gas or gas mixture is supplied to the plasma from and/or through a porous target, the intention being that the target is to have a temporary storage function on account of its porosity.
Abstract:
The invention relates to a wear-resistant, highly stressed and low-friction boundary coating construction for titanium or the alloys thereof which can be advantageously used in order to protect human implants. According to the inventive boundary coating construction the boundary coating is comprised of a 200 to 400 nm thick DLC coating (4), a 5 to 50 nm thick intermediate coating (3) and a 0.3 to 2.0 mm thick gas alloyed coating (2), said gas alloyed coating having a hardness between 600 HV0.1 and 1,400 HV0.1. The inventive boundary coating construction is produced by firstly melting the surface of the member which is to be protected. The surface is then gas alloyed and cleaned in an N2/Ar atmosphere. Subsequently, the intermediate coating is first deposited followed by a depositing of the hard amorphous carbon coating by means of the laser-induced, pulsed vacuum arc (laser-arc) method.
Abstract:
The invention relates to a system of sliding elements which are formed by a base body and a counter-body. It is the object of the invention to provide a system of sliding element comprising a base body and a counter-body which has a reduced mass with a sufficient strength and which achieves improved properties of friction and wear. The system of sliding elements in accordance with the invention is formed by a counter-body and a base body as friction partners. The base body is formed from a fiber-reinforced polymer material and the counter-body is coated with diamond-like carbon at the surface subject to friction. At least the base body is formed from a textile-reinforced polymer matrix structure.
Abstract:
A coating based on diamond-like is formed from a plurality of films of diamond-like carbon formed alternatingly over one another and in this respect a film in which no portion or only a much lower portion of doped fluorine is contained. A film in which fluorine or at least fluorine with a higher portion than the film arranged thereunder or thereabove are formed alternatingly over one another. The coating could be manufactured by using a target of pure carbon. Films are deposited on a surface of a substrate by means of a PVD process, with the portion of fluorine contained in doped form. Films are formed alternately being varied by varying a supplied volume flow of a fluorine/carbon compound or sulfur/fluorine compound as a precursor.
Abstract:
A method and system for coating the functional surfaces of symmetrically serrated components, in particular the tooth flanks of gears, includes a coating source emitting coating material in the form of electrically charged particles in the direction of a revolving component. A high-quality functional surface coating of the component is achieved in that a shield is arranged in the beam path between the component and the coating source transversely to the irradiation direction, which shields the component from the coating beam in a contour area with a functional surface orientation inclined flatly with respect to the irradiation direction.
Abstract:
A medical device, such as an orthopedic or prosthetic joint, has a protective coating bonded to the substrate material of the device. Suitable substrate materials may include pure metals and metal alloys, ceramics, polymers and composites of the above. The protective coating includes a thin layer of tetrahedral bonded Carbon (ta-C). The coating also optionally includes an interface layer to facilitate the initial bonding and retention of the ta-C layer, such as by acting as an adhesion promoter, fluid barrier layer, or coefficient of thermal expansion mismatch reducing layer, or combination thereof. The interface layer may include various tightly adherent metals and metal nitrides, such as Cr, Ti, Nb, Ta and carbides, nitrides and carbonitrides thereof. The ta-C layer has a concentration of sp3 bonded carbon which varies through its thickness. Many concentration profiles of sp3 carbon bonds through the thickness are possible. The ta-C layer may also be doped with various materials, either through its thickness, or at either an inner or an outer interface, or both. The doping may include any suitable dopant, including various pure metals or metal alloys, bone growth substances, and dopants which alter the tribology of the ta-C layer with respect to the fluids in which it is in contact, such as dopants comprising F and N, or combinations of these materials.
Abstract:
A coating based on diamond-like is formed from a plurality of films of diamond-like carbon formed alternatingly over one another and in this respect a film in which no portion or only a much lower portion of doped fluorine is contained. A film in which fluorine or at least fluorine with a higher portion than the film arranged thereunder or thereabove are formed alternatingly over one another. The coating could be manufactured by using a target of pure carbon. Films are deposited on a surface of a substrate by means of a PVD process, with the portion of fluorine contained in doped form. Films are formed alternately being varied by varying a supplied volume flow of a fluorine/carbon compound or sulfur/fluorine compound as a precursor.
Abstract:
The invention relates to a system of sliding elements which are formed by a base body and a counter-body. It is the object of the invention to provide a system of sliding element comprising a base body and a counter-body which has a reduced mass with a sufficient strength and which achieves improved properties of friction and wear. The system of sliding elements in accordance with the invention is formed by a counter-body and a base body as friction partners. The base body is formed from a fiber-reinforced polymer material and the counter-body is coated with diamond-like carbon at the surface subject to friction. At least the base body is formed from a textile-reinforced polymer matrix structure.
Abstract:
An orthopedic device having a protective coating bonded to the substrate material of the device. The protective coating includes a thin layer of tetrahedral bonded Carbon (ta-C). The substrate also optionally includes an interface layer to facilitate the initial bonding and retention of the ta-C layer. The ta-C layer has a concentration of sp3 bonded carbon which varies through its thickness, such as varying in individual layers forming the protective coating. The protective coating may also be doped with various materials, either through its thickness, or at either an inner or an outer interface, or both, or include ion diffusion barriers.
Abstract:
The invention relates to an electric resistance element, which can be electromechanically regulated. A layer of a predeterminable width and thickness, consisting of an electrically conductive material with a constant specific electric resistance, is located on a substrate. At least one electric contact connection is also provided and an electric contact element can be displaced mechanically along the surface of said layer. The aim of the invention is to provide an appropriate resistance element that can be produced cost-effectively, with reproducible electric characteristics and a high resistance to wear, without a requirement for additional lubrication. To achieve this, according to the invention, a wear-resistant layer of uniform thickness is configured on the electrically condutive layer situated on the substrate. Said layer consists exclusively of a carbon similar to diamond and has a higher specific electric resistance than that of the layer. The layer of carbon similar to diamond thus lies in contact with the mechanically displaceable contact element.