Abstract:
A process for separating rhodium from mixtures thereof, comprising extracting said rhodium with an aqueous solution of a rhodium complexing agent and a solubilizer. A process for preparing aldehydes in the presence of both the complexing agent and the solubilizer is also set forth. The solubilizer is generally selected from salts of carboxylic acids having 8-20 carbon atoms, alkyl sulfonates, alkyl aryl sulfonates, amines and quaternary ammonium compounds of Formula II ##STR1## wherein A is alkyl, alkoxy, hydroxyalkyl, aryl having 6-25 carbon atoms, or R.sup.7 CONHCH.sub.2 CH.sub.2 CH.sub.2 --wherein R.sup.7 is alkyl having 5-11 carbon atoms; B is an alkyl having 1-25 carbon atoms, an aryl having 6-25 carbon atoms, or an .omega.-hydroxy alkyl having 1-4 carbon atoms; C and D are each independently an alkyl or .omega.-hydroxy alkyl having 1-4 carbon atoms or form, together with each other and the bridging N, a 5 or 6 membered heterocyclic ring; E is a halide, sulfate, borate, sulfonate, lactate or citrate; and p is the number of charges on E. The rhodium complexing agent is preferably a triaryl phosphine carboxylate or sulfonate.
Abstract:
The present invention relates to a process for the preparation of aldehydes by the reaction of olefinic compounds with hydrogen and carbon monoxide in the presence of a catalyst system containing rhodium and aromatic phosphines. The aromatic phosphines are soluble in organic media and represent salts of sulfonated or carboxylated triarylphosphines which are insoluble in water. After hydroformylation, the reaction product is treated with a diluted aqueous solution of a base and the aqueous phase containing rhodium and aromatic phosphines is separated. Thus, thermal loading of the catalyst, for example by the redistillation of the reaction product, is avoided.
Abstract:
A process for the preparation of tricyclo[5.2.1.0.sup.2,6 ]decan-8(9)-one by the conversion of 8(9)-hydroxytricyclo[5.2.1.0.sup.2,6 ]dec-3-ene by means of a supported catalyst containing nickel and magnesium oxide at elevated temperature and, if necessary, at elevated pressure.
Abstract:
A process for the preparation of aldehydes by hydroformylation of olefins in the presence of an aqueous solution containing rhodium as a catalyst. The aqueous solution preferably contains rhodium in a concentration of 450 to 800 weight-ppm and sulfonated or carboxylated triarylphosphines as complex ligands in a concentration of 25 to 30% by weight, both based on the aqueous solution.
Abstract:
A process for the preparation of a rhodium catalyst comprising dissolving a carboxylic acid salt of rhodium in a solvent taken from the class consisting of aliphatic, cycloaliphatic, aromatic hydrocarbons and mixtures thereof. The carboxylic acid has 2 to 18 carbon atoms. This salt is reacted with carbon monoxide and hydrogen to form a rhodium hydridrocarbonyl which is reacted with an aqueous solution of a triaryl phosphine. The aqueous solution may be present during the initial reaction of the rhodium salt or may be added thereafter. A catalyst which is the product of the foregoing process is also disclosed, as is a method of producing aldehydes using the catalyst.
Abstract:
A process for separating rhodium from mixtures thereof, comprising extracting said rhodium with an aqueous solution of a rhodium complexing agent and a solubilizer. A process for preparing aldehydes in the presence of both the complexing agent and the solubilizer is also set forth. The solubilizer is generally selected from salts of carboxylic acids having 8-20 carbon atoms, alkyl sulfonates, alkyl aryl sulfonates, amines and quaternary ammonium compounds of Formula II ##STR1## wherein A is alkyl, alkoxy, hydroxyalkyl, aryl having 6-25 carbon atoms, or R.sup.7 CONHCH.sub.2 CH.sub.2 CH.sub.2 --wherein R.sup.7 is alkyl having 5-11 carbon atoms; B is an alkyl having 1-25 carbon atoms, an aryl having 6-25 carbon atoms, or an .omega.-hydroxy alkyl having 1-4 carbon atoms; C and D are each independently an alkyl or .omega.-hydroxy alkyl having 1-4 carbon atoms or form, together with each other and the bridging N, a 5 or 6 membered heterocyclic ring; E is a halide, sulfate, borate, sulfonate, lactate or citrate; and p is the number of charges on E. The rhodium complexing agent is preferably a triaryl phosphine carboxylate or sulfonate.
Abstract:
A process for the purification of propanediol-1,3, especially when produced by hydration of acrolein with water, including extracting the diol with cyclohexane. Preferably, from 2 to 10 parts by weight of cyclohexane per part by weight of diol is used. The purification is usually carried out below 60.degree. C.
Abstract:
The present invention relates to a process for the preparation of nonadecanediols by the hydroformylation of oleyl alcohol. Rhodium and salts of sulfonated or carboxylated triarylphosphines, which are soluble in organic media and insoluble in water, are used as hydroformylation catalysts. The hydroformylation product is then treated with a diluted solution of a base dissolved in water, the aqueous phase separated and the hydroformylation product treated with hydrogen at elevated temperature in the presence of a hydrogenation catalyst.
Abstract:
A process for the purification of a gas containing one or more of hydrogen sulfide, hydrogen cyanide, and carbonyl sulfide as impurities comprising contacting the gas with at least one aliphatic aldehyde which is liquid under the purification conditions. The gas is inert to the aldehyde under such conditions. The process is useful in the purification of synthesis gas for use in reactions wherein sensitive catalysts are employed.
Abstract:
A polyol composition comprising a solid polyol which is crystalline under normal conditions and, as an anti-caking agent therefor, a tertiary amine containing at least two identical organic substituents, each having two to twenty carbon atoms. A method of preventing caking of polyols is disclosed wherein to such polyols there is added at least one of such tertiary amines, preferably in a concentration of 0.05 to 0.25 percent by weight based on the weight of the polyol.