Abstract:
A displaying method used in a portable electronic device is provided. The portable electronic device includes a display panel having a backlight module. The displaying method includes the following steps: turning off the backlight module when a rotation event occurs; waiting for a time period; turning on the backlight module.
Abstract:
The present invention discloses a brightness compensation method. The brightness compensation method includes controlling a plurality of backlights of a plurality of display areas to turn on with a plurality of backlight intensity; calculating a plurality of total backlight intensity; calculating a plurality of actual backlight intensity according to the plurality of total backlight intensity and a backlight scanning ratio; dividing a plurality of maximum backlight intensity when the plurality of backlights are fully turned on by the plurality of actual backlight intensity, to generate a plurality of compensation gains; and displaying a compensated image data with a plurality of compensated image intensity after compensating a plurality of image intensity corresponding to the plurality of display area of an image data with the plurality of compensation gains.
Abstract:
The disclosure provides a motherboard module, which includes a motherboard, a cover, a plurality of raised posts and a plurality of plates. The cover covers the motherboard thereon and a first space is formed by the cover and the motherboard. The raised posts are disposed in the first space. The plates are detachably assembled to the raised posts and connected between any two adjacent raised posts so as to partition the first space into a plurality of second spaces. The plates and the raised posts can restrict the heat generated by the heat sources at different limited areas, which is advantageous for the cooling air-flow to cool the heat sources and the motherboard module thereby has better cooling performance.
Abstract:
A device and method are provided for two dimension (2D) to three dimension (3D) conversion. A 2D to 3D conversion device receives a 2D image data. The 2D to 3D conversion device assigns position data of a predetermined window. The 2D to 3D conversion device generates a depth map including a depth data of the 2D image data according to the 2D image data and the position data of the predetermined window. The 2D to 3D conversion device converts the 2D image data into a 3D image data according to the depth data of the depth map and the position data of the predetermined window.
Abstract:
A fan system is electrically connected with a driving source generator and includes a first fan, a second fan and an energy storage element. The second fan is rotated by the first fan for generating an electric energy. The energy storage element is electrically connected with the second fan for storing the electric energy and keep supplying power when the driving source generator is out of order or the fan is rotating in lower rotation speed.
Abstract:
A lamp includes a housing, a heat sink, a light emitter, a fan and a blocking ring. The housing has an air inlet portion and an air outlet portion formed in a wall of the housing. The heat sink includes a base plate and a plurality of fins surrounding the base plate to define a compartment. Each of the fins have a first end facing the air inlet portion of the housing and a second end connecting with the base plate. The light emitter is fixed to the base plate of the heat sink. The fan is fixed inside the compartment of the heat sink. The blocking ring is mounted between the air inlet portion and the heat sink. Accordingly, the blocking ring blocks part of the heated airflow from flowing back to the air inlet portion and turbulence is avoided effectively. Therefore, the airflow inside the housing can flow smoothly through the air outlet to transfer heat to the environment and heat dissipating efficiency is enhanced.
Abstract:
A lamp comprises a housing, a heat sink, a light emitting member, a fan and a blocking ring. The housing includes an outlet section and an inlet section formed on the wall thereof. The heat sink is mounted inside the housing and includes a base plate and a plurality of fins, with the fins being close to the outlet section of the housing and arranged around the base plate to form a chamber. Each of the fins has a first end facing the inlet section of the housing and a second end connecting with the base plate. The light emitting member is fixed to the base plate of the heat sink. The fan is fixed inside the chamber of the heat sink. The blocking ring is mounted inside the housing and between the inlet section and the heat sink and includes an inlet hole aligned with the chamber of the heat sink. By the blocking ring, parts of the heated air flows are blocked from flowing back to the inlet section to avoid turbulence resulting from flowing back air flows. Consequently, the air flows risen by the fan and receiving the heat inside the housing can flow smoothly to out of the housing through the outlet section to enhance heat dissipating efficiency of the heat sink and the fan.
Abstract:
A phase lock loop includes a calibration loop for calibrating a tank circuit for capacitance variation through process variations of manufacturing an integrated circuit including the phase lock loop. A capacitance profile for setting the frequency of the phase lock loop at a process corner, such as a typical process corner is stored in driver software or a host processor. At power up, or after an idle time, a calibration is performed at two frequencies. The capacitances of operating the phase lock loop at the two frequencies are determined and stored. During a frequency change, the capacitance of operating the phase lock loop is determined from the capacitance profile and stored capacitances. In one aspect, the capacitance of the phase lock loop is presumed to change linearly with frequency and the two stored capacitances are used to determine a difference capacitance at the selected frequency by linear interpolating between the two stored capacitances. The interpolated difference capacitance is added to the capacitance in the capacitance profile at the selected frequency to generate an operating capacitance. The capacitance of a tank circuit of the phase lock loop is set to the operating capacitance.
Abstract:
Systems and methods are provided for reducing the peak to average ratio of signals, so that the signals can be amplified more efficiently. An error signal that corresponds to crests of the input signal is generated, and subtracted from the input signal. When a crest is so long that it corresponds to more than one sample, only the maximum sample contained in the crest is used to form the error signal. Optionally, multiple stages of decresting may be implemented sequentially.
Abstract:
A test assembly for an integrated circuit package includes a package substrate and a test board. The package substrate is provided with a plurality of first contact pads linked in a first daisy chain pattern. The test board has a plurality of second contact pads linked in a second daisy chain pattern and a plurality of test pads. All of the second contact pads are divided into a plurality of groups each connected to one pair of test pads. All of the second contact pads in any group are arranged in a line. The present invention further provides a method of testing an integrated circuit package utilizing the aforementioned package substrate and test board.