Abstract:
An image processing method includes calculating a desirability score which indicates a desirability of the image, for each of a series of images captured in a time-sequential manner, based on a recognition result of the image, and selecting a plurality of images as best-shots in which desirability scores are a local maximum value in a time-sequence, from the series of images.
Abstract:
This invention obtains information required to quantitatively evaluate block distortion of an image on the basis of encoded data that utilizes the compression encoding technique for respective blocks. To this end, a compression encoding unit (106) compression-encodes an image input from an image input unit (104) in accordance with an encoding parameter input from an encoding parameter input unit (107). A decoding unit (108) generates a decoded image by decoding the compression-encoded data. A spatial differentiator (101) in a block distortion evaluator (100) makes a spatial derivative calculation of the original image data, and a spatial differentiator (102) makes a spatial derivative calculation of the decoded image. An evaluation information calculator (103) generates block distortion index information on the basis of these two derivative calculation results.
Abstract:
Acetal glycol diacrylates of the formula: ##STR1## wherein R.sub.1 represents H or CH.sub.3 and R.sub.2 represents CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7,and a process for producing them are provided.
Abstract translation:具有下式的乙缩醛二丙烯酸酯:其中R 1表示H或CH 3且R 2表示CH 3,C 2 H 5或C 3 H 7,并且提供其制备方法。
Abstract:
A system includes a plurality of image capturing units configured to capture an object image to generate video data, a video coding unit configured to code each of the generated video data, a measurement unit configured to measure a recognition degree representing a feature of the object from each of the generated video data, and a control unit configured to control the video coding unit to code each of the video data based on the measured recognition degree.
Abstract:
A system includes a plurality of image capturing units configured to capture an object image to generate video data, a video coding unit configured to code each of the generated video data, a measurement unit configured to measure a recognition degree representing a feature of the object from each of the generated video data, and a control unit configured to control the video coding unit to code each of the video data based on the measured recognition degree.
Abstract:
An image processing method includes calculating a desirability score which indicates a desirability of the image, for each of a series of images captured in a time-sequential manner, based on a recognition result of the image, and selecting a plurality of images as best-shots in which desirability scores are a local maximum value in a time-sequence, from the series of images.
Abstract:
A cam-type automatic tool-exchanging apparatus comprises: a housing; an input rotary shaft within the housing; a rotational-motion converting cam within the housing and rotationally driven by the input rotary shaft and outputting a rotational motion; a lifting/lowering-motion producing cam provided the housing and rotationally driven by the input rotary shaft and outputting a lifting/lowering motion; a tool-exchanging arm provided outside the housing and driven by the rotational motion and the lifting/lowering motion outputted for performing a tool-exchanging operation; a shutter provided outside the housing and to be opened/closed in accordance with the tool-exchanging operation; an opening/closing-motion producing cam within the housing and rotationally driven by the input rotary shaft and outputting a shutter-opening/closing pivotal motion for opening/closing the shutter; and a shutter-driving rotary shaft within the housing and outputting the shutter-opening/closing pivotal motion of the opening/closing-motion producing cam from inside of the housing to the outside.
Abstract:
A selector selects one of a standard parameter corresponding to a filter strength contained in input movie image data and an original parameter originally set at the decoding side as a filter parameter to be used. A screen-display filter performs deblocking filtering using the filter parameter selected by the selector on decoded movie image data. A post-filter performs deblocking filtering using the standard parameter and stores the obtained decoded image data in a memory to allow it to be used in inter-frame compensation.
Abstract:
A selector selects one of a standard parameter corresponding to a filter strength contained in input movie image data and an original parameter originally set at the decoding side as a filter parameter to be used. A screen-display filter performs deblocking filtering using the filter parameter selected by the selector on decoded movie image data. A post-filter performs deblocking filtering using the standard parameter and stores the obtained decoded image data in a memory to allow it to be used in inter-frame compensation.
Abstract:
This invention obtains information required to quantitatively evaluate block distortion of an image on the basis of encoded data that utilizes the compression encoding technique for respective blocks. To this end, a compression encoding unit (106) compression-encodes an image input from an image input unit (104) in accordance with an encoding parameter input from an encoding parameter input unit (107). A decoding unit (108) generates a decoded image by decoding the compression-encoded data. A spatial differentiator (101) in a block distortion evaluator (100) makes a spatial derivative calculation of the original image data, and a spatial differentiator (102) makes a spatial derivative calculation of the decoded image. An evaluation information calculator (103) generates block distortion index information on the basis of these two derivative calculation results.