Abstract:
A glass base material manufacturing apparatus for manufacturing a glass base material comprising: a plurality burners, arranged in a row at a predetermined intervals along the longitudinal direction of a starting base material of the glass base material, for forming a deposit, which is a base material of the glass base material by depositing glass soot on the starting base material while moving reciprocatory over a section of the entire length of the starting base material along the longitudinal direction of the starting base material; a plurality of flow rate regulators, at least one of which is connected to the plurality of burners, respectively, for regulating a flow rate of raw material gas of the glass soot, which is supplied to the plurality of burners; and a control unit connected to each of the plurality of flow rate regulators for controlling individually the plurality of flow rate regulators.
Abstract:
A method for manufacturing an optical fiber comprises setting a heating condition for heating a glass rod, which is a parent material of the optical-fiber, and an elongating speed of the glass rod based on a prescribed numerical value which changes with a progress of elongation of the glass rod; heating and elongating the glass rod to generate a preform based on the heating condition and the elongating speed which are set by the setting; and drawing the preform to a filament-like form by further heating the preform to generate the optical fiber.
Abstract:
An apparatus for manufacturing a glass base material which is an parent material of an optical fiber, comprising: a tank which contains a raw material of the glass base material to vaporize the raw material to generate a raw material in gas phase; a temperature control unit which controls a temperature of the raw material; and a pressure control unit which controls the pressure of the raw material in gas phase.
Abstract:
The glass base material drawing apparatus for heating and drawing a glass base material has a storage unit for storing the glass base material having an opening unit that is opened along the longitudinal direction of the storage unit when the glass base material is placed inside the storage unit, a heating unit for heating the glass base material that has been stored inside the storage unit via the opening unit, and a pull-out unit for pulling out the glass base material heated by the heating unit. The opening unit may be opened in such a manner that the glass base material is moved from a side direction of the storage unit into the interior of the storage unit. A main axis for supporting the glass base material is connected to the glass base material. The storage unit may have a penetration hole through which the main axis is inserted when the opening unit is closed.
Abstract:
A method for fusing an optical fiber preform comprises fusing the preform while blowing an oxidative gas against the preform to be fused from upper and lower directions of a fusing burner unit. An apparatus for carrying out the method includes a plurality of nozzles for preventing deposition of silica cloud, which are each set at an angle, &thgr;, of blowing the oxidative gas relative to the preform being drawn such 20°≦&thgr;≦60°.
Abstract:
The optical fiber base material heat treatment method can be provided that the first flame polishing heats the surface of the optical fiber base material (106) with fixing a length of the optical fiber base material (106) and the second flame polishing heats the surface of the optical fiber base material (106) by lower temperature than the temperature of the heating of the first flame polishing.
Abstract:
Apparatus (700) for sintering a glass base material (2) which is a base material for an optical fiber. The sintering apparatus (700) includes: a control unit which varies a condition for sintering the glass base material; and a furnace (12) which sinters the glass base material by heating the glass base material in an atmosphere of dehydration gas and inert gas. The control unit includes a drive source (3) which supplies the glass base material to the furnace at various speeds. The control unit includes a temperature control unit which controls the temperature of a heating source provided in the furnace.
Abstract:
A method and apparatus for producing a glass base material for an optical fiber. A material for an optical fiber and a reaction gas are jetted from a burner connected to a material line and a gas line toward a surface of a quartz substrate, in order to deposit a soot-like reaction product on the substrate at a predetermined position to thereby produce a glass base material for an optical fiber. Dry air is introduced into a reaction container in an amount of 4 to 8 times the amount of water vapor that is generated due to flame hydrolysis during the reaction. Therefore, it is possible to reliably solve the problem that the interior of the reaction container is excessively dried, with the result that soot generated through a reaction adheres to and aggregates on the wall surface of the reaction container due to static electricity, and the problem that the amount of water vapor becomes excessive and is condensed on the wall surface, with the result that soot strongly adheres to the wall surface, while the observation window or the like becomes fogged. Further, soot peeled off the wall surface is prevented from adhering to or melting into the side surface or base portion of a pre-form being pulled, so that the quality of products is improved, and stable operation becomes possible.
Abstract:
A method for manufacturing a base material for an optical fiber, includes steps of: holding a bar material by a support member; and adjusting to reduce a difference between an axis of the bar material and a rotational axis of the support member. Furthermore, an optical fiber base material grasping apparatus for holding a bar material having an axis, includes: a support member having a center axis, the support member being rotatable around the center axis; and an adjusting mechanism for reducing a difference between the axis of the bar material and the central axis of the support member.
Abstract:
An apparatus for manufacturing a glass-base-material, which is a base material of an optical fiber, includes a driving unit that drives a glass rod around an axis of the glass rod; a burner for accumulating glass soot around outside surface of the glass rod, which is driven by the driving unit, to form the glass-base-material; a weight-deducting unit, on which the driving unit is mounted, for deducting a predetermined weight from a total weight of the driving unit and the glass-base-material formed by the burner; and a measuring unit provided under the weight-deducting unit for measuring the total weight, from which the predetermined weight is deducted by the weight-deducting unit.