Abstract:
Disclosed are a polarizing plate manufacturable by a manufacturing method safe in work and less imposing a burden on the environment using protective films excellent in adhesion with the polarizer and a method for manufacturing the same. A liquid crystal display device using the polarizing plate and having both a large viewing angle and a high visibility (high contrast and so forth) is also disclosed. The polarizing plate made by holding both surfaces of the polarizer held with protective films is characterized in that at least one protective film is a protective film hydrophilized by either a plasma treatment or a corona treatment and that the surface energy of the protective films before the hydrophilization and the surface energy of the protective films after the hydrophilization satisfy a predetermined relational expression.
Abstract:
Provided is a cellulose acetate film which has excellent retardation properties and exhibits low haze even under high-temperature and high-humidity conditions and which, in an alkaline saponification step, causes little dissolution of the film itself or additives in a saponifying liquid. The cellulose acetate film is characterized by comprising: a cellulose acetate which has an acetyl substitution degree of 2.0 to 2.5; and 5 to 15% by mass (relative to the cellulose acetate) of a component which contains a compound represented by general formula (1) wherein m is 0 and a compound represented thereby wherein in is more than 0 at a ratio of 45:55 to 0:100. In general formula (1), G is a mono- or di-saccharide residue; X1 is —O—; R1 is —CO—R2; R2 is an aliphatic or aromatic group; m represents the total number of hydroxyl groups directly bonded to the mono- or di-saccharide residue; and n represents the total number of OR1 groups directly bonded to the mono- or di-saccharide residue, with the proviso that m and n satisfy fee relationships: 3≦m+n≦8 and n is not 0.
Abstract:
A safe and stable production method of a hydrogenated polymer having high transparency, which is a production method of a hydrogenated polymer by hydrogenating aromatic rings of an aromatic vinyl compound-(meth)acrylate copolymer, in which (1) a solvent solution of the copolymer is added to a reactor, which has a solvent and a supported palladium catalyst charged therein, under a hydrogen atmosphere at a rate of from 0.01 to 15 g/hour in terms of the copolymer per unit mass (g) of the supported palladium catalyst, thereby performing hydrogenation reaction, and then such an operation is performed repeatedly that (2) a hydrogenated polymer is obtained from 30 to 90% by mass of the resulting reaction mixed solution, and a fresh solvent solution of the copolymer is added to the reactor, in which the residual reaction mixed solution is left, or to which the residual reaction mixed solution is returned, at a rate of from 0.01 to 15 g/hour in terms of the copolymer per unit mass (g) of the supported palladium catalyst, thereby performing hydrogenation reaction.
Abstract:
Provided is a cellulose acetate film which has excellent retardation properties and exhibits low haze even under high-temperature and high-humidity conditions and which, in an alkaline saponification step, causes little dissolution of the film itself or additives in a saponifying liquid. The cellulose acetate film is characterized by comprising: a cellulose acetate which has an acetyl substitution degree of 2.0 to 2.5; and 5 to 15% by mass (relative to the cellulose acetate) of a component which contains a compound represented by general formula (1) wherein m is 0 and a compound represented thereby wherein in is more than 0 at a ratio of 45:55 to 0:100. In general formula (1), G is a mono- or di-saccharide residue; X1 is —O—; R1 is —CO—R2; R2 is an aliphatic or aromatic group; m represents the total number of hydroxyl groups directly bonded to the mono- or di-saccharide residue; and n represents the total number of OR1 groups directly bonded to the mono- or di-saccharide residue, with the proviso that m and n satisfy fee relationships: 3≦m+n≦8 and n is not 0.
Abstract:
A battery pack detachably connectable to an equipment body to supply power to the equipment body, the battery pack including a battery cell, a microcomputer for communicating with the equipment body, a connection terminal connected to the microcomputer, a positive power supply input terminal connected to a cathode of the battery cell; and a negative power supply input terminal connected to an anode of the battery cell. After the power of the equipment body is turned on, the microcomputer alternately sends to the equipment body by serial communication via the connection terminal information to be used in authentication processing executed by the equipment body and information to be used in a battery residual quantity count executed by the equipment body. After the authentication processing is complete, the microcomputer sends to the equipment body information to be used in updating the battery residual quantity count executed by the equipment body.
Abstract:
The measuring device 1 includes a measurement vessel 13 contained a liquid 12 filled therein, and a sensor 11 provided in the measuring vessel 13 and for detecting components of a gaseous sample dissolved in the liquid 12. The measuring device 1 also includes a bubble-generating unit 14, which is supplied with a gaseous sample and has an aperture 141 for discharging the gaseous sample in form of bubbles into the liquid. The aperture 141 faces the sensor 11 and the bubble-generating unit 14 is disposed to have a predetermined clearance with the sensor 11. A relation of 1/2Y≦X≦3/2Y is satisfied, where X represents a distance of a clearance between the bubble-generating unit 14 and the sensor 11 and Y represents a diameter of the aperture 141 of the bubble-generating unit 14.
Abstract:
To provide a thinner, lighter battery pack and to reduce the cost by eliminating the need for a battery case. A thin battery pack structure using an outer packaging film (battery pack) is constructed by a flat and rectangular shaped battery cell, a flat and rectangular shaped frame portion accommodating the battery cell, a circuit board unit disposed on the outer side surface of the frame portion, a cap portion mounted on one ends of the frame portion and the battery cell so as to sandwich the circuit board unit with the outer side surface of the frame portion, and an outer packaging film for integrally covering the rectangular battery cell and the frame portion.
Abstract:
Apparatus, method and computer program product are provided for battery management. In one implementation, a method of communication provided. The method includes enabling determining when a battery pack is coupled to a device, the battery pack including a battery management system. The method also includes generating a random number at the battery management system, the battery management system including battery monitoring circuitry, a processor, memory and a random number generator. The method includes using the random number to provide authentication and if authentication succeeds, enabling communication between the battery pack and the device.
Abstract:
The present invention is directed to a battery residual quantity display method for performing display of battery residual quantity of a battery pack mounted at an electronic equipment and serving to supply power to the electronic equipment. When power is turned ON, a first microcomputer (3) of the camera body (1) side serves to first acquire, by serial communication, information for battery residual quantity display from a second microcomputer (7) of the battery pack (2) side loaded at the camera body to perform battery residual quantity display on the basis of the acquired information to subsequently acquire, by serial communication, information for authentication processing from the second microcomputer of the battery pack side to perform an authentication processing for judging on the basis of the acquired information as to whether or not the battery pack connected to the camera body is genuine battery pack to update, after the authentication processing, the content of the battery residual quantity display on the basis of information for battery residual quantity display acquired by serial communication from the microcomputer of the battery pack side.
Abstract:
A battery pack detachably connectable to an equipment body to supply power to the equipment body, the battery pack including a battery cell, a microcomputer for communicating with the equipment body, a connection terminal connected to the microcomputer, a positive power supply input terminal connected to a cathode of the battery cell; and a negative power supply input terminal connected to an anode of the battery cell. After the power of the equipment body is turned on, the microcomputer alternately sends to the equipment body by serial communication via the connection terminal information to be used in authentication processing executed by the equipment body and information to be used in a battery residual quantity count executed by the equipment body. After the authentication processing is complete, the microcomputer sends to the equipment body information to be used in updating the battery residual quantity count executed by the equipment body.