Abstract:
A phase shift unit provides a prescribed phase difference (π/2, for example) between a pair of optical signals transmitted via a pair of arms constituting a data modulation unit. A low-frequency signal f0 is superimposed on one of the optical signals. A signal of which phase is shifted by π/2 from the low-frequency signal f0 is superimposed on the other optical signal. A pair of the optical signals is coupled, and a part of which is converted into an electrical signal by a photodiode. 2f0 component contained in the electrical signal is extracted. Bias voltage provided to the phase shift unit is controlled by feedback control so that the 2f0 component becomes the minimum.
Abstract:
A wavelength selective switch includes a wavelength dispersing element, a wavelength converging element, multiple transmission control elements, and a controller. The wavelength dispersing element performs wavelength dispersion of input signal light. The transmission control element divides input signal light into wavelength bands within a channel band and transmits or cuts off the divided input signal light. The wavelength converging element converges signal light having respective wavelengths produced from the transmission control elements for output. The controller controls a transmittance of the transmission control element of at least one of the low and high frequency sides in a channel band. The wavelength selective switch sets as a cutoff band at least one of predetermined bands on the low and high frequency sides, narrows a transmission band of the input signal light to be wavelength-multiplexed, deletes an overlapped band of optical spectra, and outputs the transmission signal light, thereby suppressing crosstalk.
Abstract:
An OADM in a wavelength division multiplexing transmission system includes a wavelength selection switch that selects a predetermined wavelength from a multiple optical signal obtained by multiplexing a phase modulated signal and an intensity modulated signal and outputs the selected wavelength signal to a predetermined output port. The wavelength selection switch has a different delay for each wavelength of the multiple optical signal. For example, the wavelength selection switch includes a mirror array. Optical paths from the surfaces of mirrors arranged on the mirror array to the diffraction grating are different in the case of adjacent mirrors.
Abstract:
A variable dispersion compensating unit compensates an optical signal, and changes the compensation amount according to a control signal that has a given frequency. After demodulation of the compensated optical signal, error conditions of the signal are monitored and an error signal is output. A band pass filter filters the error signal for a component having a frequency equal to or less than the given frequency. Based on the component and on the control signal, a synchronous detecting circuit generates a compensation amount modification signal. The compensation amount modification signal is superposed on the control signal.
Abstract:
In order to compensate for chromatic dispersion ad dispersion slope over an entire wavelength band of the optical signal, the wavelength band is split into a plurality of bands, and chromatic dispersion compensation is made to make chromatic dispersion in a central wavelength of each of the bands zero.
Abstract:
The optical node connects N networks to each other (where N is an integer larger than one). Each of the N networks respectively includes a first transmission path and a second transmission path. The optical node includes a switching unit that connects the first transmission path of one network of the N networks to other (N−1) networks; a failure detector that detects failure in the first transmission path of the network; and a control unit that causes the switching unit to connect the second transmission path of the network to the other (N−1) networks when the failure is detected.
Abstract:
An optical transmitting apparatus is configured such that K pieces of output ports of optical path switching units whose input port is connected to k-th input transmission path are connected to first to K-th output transmission paths except for the k-th output transmission path and to the k-th input port of a dropping unit, and the optical path switching units and the dropping unit outputs light of wavelength which is part or all of WDM light received from said input port from a specific output port, and can output light having a wavelength different from that of the light output from said specific output port from an output port different from said specific output port. Accordingly, while largely reducing the number of optical fiber patch cords necessary in an optical transmitting apparatus and largely reducing the number of spare ports, the flexible expansion of apparatus function can be realized.
Abstract:
A repeating apparatus disposed at an end point of each divisional repeating interval of a light transmission line performs a first dispersion compensation step, an optical add/drop multiplexing step and a second dispersion compensation step to perform repeating transmission. The ratio of an over compensation amount at the second dispersion compensation step to the sum of dispersion compensation amounts at the first and second dispersion compensation steps is set so as to gradually vary together with the transmission distance from the terminal apparatus for transmission at which the repeating apparatus is disposed on the light transmission line so that degradation of wavelengths to be received by the terminal apparatus for reception is suppressed while dispersion compensation is performed with a high degree of accuracy at each optical add/drop multiplexing point on the transmission line.