Abstract:
It is an object of the present invention to provide a method capable of measuring low density lipoprotein cholesterol (LDL) in a body fluid with high selectivity. The present invention provides a method for measuring low density lipoprotein cholesterol (LDL-C) in a body fluid, which comprises treating the body fluid with a polymer compound having an allylamine or diallylamine unit, and measuring the low density lipoprotein cholesterol (LDL-C) using (a) cholesterol esterase and (b) cholesterol oxidase or cholesterol dehydrogenase.
Abstract:
The present invention is a method for isolating and purifying a nucleic acid, where generation of foams is able to be suppressed whereby the isolation and purification of a nucleic acid are easily and efficiently carried out, the method for isolating and purifying a nucleic acid comprising the step of: (1) contacting a sample solution containing nucleic acid to a solid phase to adsorb the nucleic acid onto the solid phase; (2) contacting a washing solution to the solid phase to wash the solid phase in such a state that the nucleic acid is adsorbed; and (3) contacting an elution solution to the solid phase to desorb the nucleic acid, wherein the sample solution containing nucleic acid contains an antifoaming agent.
Abstract:
A method for separating and purifying RNA including the steps of passing a sample solution containing a nucleic acid, a washing solution and a recovering solution through a nucleic acid-adsorbing porous membrane to adsorb nucleic, adsorbing, washing and recovering, in which the nucleic acid adsorbing porous membrane is a porous membrane capable of adsorbing a nucleic acid by interaction involving substantially no ionic bond, and the sample solution is obtained by a process, comprising the steps of (I) injecting a test sample containing at least one of blood and leukocyte, and further containing an anticoagulant to a container, (II) adding a hemolytic agent to the container to obtain a leukocyte pellet, (III) adding a nucleic acid-solubilizing reagent to the leukocyte pallet to obtain a mixture solution and (IV) adding a water-soluble organic solvent to the mixture solution to obtain the sample solution containing the nucleic acid.
Abstract:
A method for selectively separating and purifying RNA from a mixture solution of nucleic acid containing DNA and RNA, wherein the method comprising the steps of: (1-a) adsorbing nucleic acid; (1-b) washing; (1-c) subjecting to a DNase treatment; (1-d) washing; and (1-e) desorbing the RNA from a nucleic acid-adsorbing porous membrane by a recovering solution, wherein in the step (1-c), a total amount of a DNase solution is 130 μl or less per 1 cm2 of the membrane. And a method for selectively separating and purifying RNA or DNA, which comprises the steps of: (2-a) adsorbing nucleic acid; (2-b) washing by a washing solution; and (2-c) desorbing the nucleic acid from a nucleic acid-adsorbing porous membrane, wherein the washing solution contains a water-soluble organic solvent having a concentration of 50% by weight or less, and does not contain a chaotropic salt.
Abstract:
A method for selectively separating and purifying RNA from a mixture solution of nucleic acid containing DNA and RNA, wherein the method comprising the steps of: (1-a) adsorbing nucleic acid; (1-b) washing; (1-c) subjecting to a DNase treatment; (1-d) washing; and (1-e) desorbing the RNA from a nucleic acid-adsorbing porous membrane by a recovering solution, wherein in the step (1-c), a total amount of a DNase solution is 130 μl or less per 1 cm2 of the membrane. And a method for selectively separating and purifying RNA or DNA, which comprises the steps of: (2-a) adsorbing nucleic acid; (2-b) washing by a washing solution; and (2-c) desorbing the nucleic acid from a nucleic acid-adsorbing porous membrane, wherein the washing solution contains a water-soluble organic solvent having a concentration of 50% by weight or less, and does not contain a chaotropic salt.
Abstract:
A method for separating and purifying a nucleic acid comprising steps of: (1) adding a lysis solution to a biomaterial to prepare a sample solution containing a nucleic acid, and adding a water-soluble organic solvent or a solution containing a water-soluble organic solvent to the sample solution thereby preparing a sample solution containing the water-soluble organic solvent; (2) contacting the sample solution containing the water-soluble organic solvent with a solid phase thereby adsorbing the nucleic acid on the solid phase; (3) contacting a washing solution with the solid phase thereby washing the solid phase in a state where the nucleic acid is adsorbed on the solid phase; and (4) contacting a recovering solution with the solid phase thereby desorbing the nucleic acid from the solid phase, wherein, in the step (1), the water-soluble organic solvent or the solution containing the water-soluble organic solvent is added separately in at least two batches.
Abstract:
It is an object of the present invention to provide a method for measuring low density lipoprotein cholesterol (LDL-C) in a body fluid, which is able to selectively measure low density lipoprotein cholesterol in a body fluid without using a low density lipoprotein cholesterol-selective surfactant having a risk of generating endocrine-disrupting chemicals. The present invention provides a method for measuring low density lipoprotein cholesterol (LDL-C) in a body fluid, which comprises measuring low density lipoprotein cholesterol (LDL-C) by using (a) cholesterol esterase and (b) cholesterol oxidase or cholesterol dehydrogenase, in the presence of a polyoxyethylene-polyoxypropylene copolymer and a polyglyceryl ether.
Abstract:
A functional group-introduced polyamide solid phase comprising: a polyamide solid phase having an amido group; and an isocyanate compound having an isocyanate group and a functional group, wherein the functional group of the isocyanate compound is introduced onto a surface of the polyamide solid phase by reacting the amido group of the polyamide solid phase with the isocyanate group of the isocyanate compound.
Abstract:
It is an object of the present invention to reduce influence of hemolysis in a dry analytical element used for measurement of components in a body fluid sample such as blood. The present invention provides a method for producing a dry analytical element for body fluid component measurement comprising at least a reagent layer containing an H2O2 color developing reagent and a spreading layer provided on the reagent layer, which comprises steps of providing a spreading layer substrate on the reagent layer containing an H2O2 color developing reagent and preparing a spreading layer by coating a low-viscosity solution containing oxidase to the spreading layer substrate and then coating a high-viscosity solution containing other reagent components than oxidase thereto.
Abstract translation:本发明的目的是减少用于测量体液样品如血液中的组分的干燥分析元件中溶血的影响。 本发明提供一种体液成分测定用干燥分析元件的制造方法,至少包含含有H 2 O 2显色剂的试剂层和设置在试剂层上的扩散层,该方法包括以下步骤: 试剂层,通过将含有氧化酶的低粘度溶液涂布在扩散层基材上,然后涂布含有除氧化酶以外的其他试剂成分的高粘度溶液,制备扩散层。
Abstract:
According to the present invention, there is provided a fluorescent nucleotide represented by the formula: A-B-C,wherein A represents a residue of natural or synthetic nucleotide, oligonucleotide, polynucleotide, or derivative thereof, and binds to B at a base moiety in said residue; B represents a divalent linking group or a single bond; and C represents a monovalent group derived from a fluorescent dye having 0 or 1 sulfonic acid group or phosphoric acid group in a molecule. The present invention provides useful fluorescent nucleotides for labeling nucleic acids, specifically, fluorescent nucleotides of which uptake ratio is high in synthetic reaction of nucleic acids.