Abstract:
Embodiments of the present invention help to reduce mag-noise in a magnetoresistive head without deterioration in reproduced output and improve the signal/noise ratio (SNR) of the magnetoresistive head. According to one embodiment, the magnetoresistive head uses a synthetic ferri free layer and it is arranged such that the magnetic field which is applied to an end of a free layer with smaller film thickness and saturation magnetization in the track width direction by a coupling field is larger than the magnetic field which is applied to it by a bias layer.
Abstract:
There is provided an angle sensor and angle detection device of high output and high accuracy with a wide operating temperature range. First through eighth sensor units 511, 522, 523, 514, 531, 542, 543 and 534 are produced from spin valve magnetoresistive films that use a self-pinned type ferromagnetic pinned layer comprising two layers of ferromagnetic films that are strongly and anti-ferromagnetically coupled. The respective sensor units are produced via the formation and patterning of thin-films magnetized at angles that differ by 90°, and the formation of insulation films. By using, for the ferromagnetic films, CoFe and FeCo films that have similar Curie temperatures to make the difference in magnetization amount be zero, high immunity to external magnetic fields, a broad adaptive temperature range, and high output are realized.
Abstract:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
Abstract:
Embodiments of the present invention provides sufficiently high exchange coupling with a magnetic layer and improve the yield and reliability of a magnetoresistive head. By using a tilted growth crystalline structured antiferromagnetic film manufactured by an oblique incident deposition method, a high exchange coupling field with a ferromagnetic film can be obtained. As a result, excellent reliability and high output can be obtained in a magnetoresistive head utilizing features in accordance with embodiments of the present invention.
Abstract:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
Abstract:
A magnetoresistive magnetic head according to one embodiment uses a current-perpendicular-to-plane magnetoresistive element having a laminate of a free layer, an intermediate layer, and a pinned layer, the pinned layer being substantially fixed to a magnetic field to be detected, wherein either the pinned layer or the free layer includes a Heusler alloy layer represented by a composition of X-Y-Z, wherein X is between about 45 at. % and about 55 at. % and is Co or Fe, Y accounts for between about 20 at. % and about 30 at. % and is one or more elements selected from V, Cr, Mn, and Fe, and Z is between about 20 at. % and about 35 at. % and is one or more elements selected from Al, Si, Ga, Ge, Sn, and Sb, the other layer including a high saturation magnetization material layer having higher saturation magnetization than that of the Heusler alloy, and where the direction of the current flowing perpendicular to plane being a direction in which an electron flows from the Heusler alloy layer into the high saturation magnetization material layer. Additional embodiments are also presented.
Abstract:
Embodiments in accordance with the present invention provide a method of manufacturing a magneto-resistive head which can realize high sensitivity and good linear response characteristics with low noise even if a track width becomes narrower. A uniaxial anisotropy unaffected by annealing which is due to the orientation of the crystal grain growth direction, is induced in a magnetic layer. The free magnetic layer has the synthetic antiferromagnetic construction: first magnetic layer/interlayer antiferromagnetic coupling layer/second magnetic layer, the magnitude of the antiferromagnetic coupling is adjusted, and linear response characteristics are obtained even if a longitudinal biasing field applying mechanism is not provided.
Abstract:
Embodiments of the present invention help to provide a single element type differential magnetoresistive magnetic head capable of achieving high resolution and high manufacturing stability. According to one embodiment, a magnetoresistive layered film is formed by stacking an underlayer film, an antiferromagnetic film, a ferromagnetic pinned layer, a non-magnetic intermediate layer, a soft magnetic free layer, a long distance antiparallel coupling layered film, and a differential soft magnetic free layer. The long distance antiparallel coupling layered film exchange-couples the soft magnetic free layer and the differential soft magnetic free layer in an antiparallel state with a distance of about 3 nanometers through 20 nanometers. By manufacturing the single element type differential magnetoresistive magnetic head using the magnetoresistive layered film, it becomes possible to achieve the high resolution and the high manufacturing stability without spoiling the GMR effect.
Abstract:
Embodiments of the present invention provide a magnetic head incorporating a CPP-GMR device having a high output at a suitable resistance. According to one embodiment, in a Current Perpendicular to Plane-Giant Magneto Resistive (CPP-GMR) head comprising a pinned layer, a free layer, and a current screen layer for confining current therein, a planarization treatment is applied to the surface of the current screen layer, thereby allowing the current screen layer to have a fluctuation in film thickness thereof. As a result of the fluctuation being provided in the film thickness of the current screen layer, parts of the current screen layer, smaller in the film thickness, will be selectively turned into metal areas low in resistance, and as the metal areas low in resistance serve as current paths, effects of confining current can be adjusted by controlling the fluctuation in the film thickness.
Abstract:
Embodiments in accordance with the present invention provide a sensor to produce high output with a small track width. Particular embodiments include forming a magnetoresistive sensor of a read head to be substantially vertical in its upper portion and gently upwardly convexly curved in its lower portion.