摘要:
A method for fabricating a wafer-level light emitting diode structure is provided. The method includes: providing a substrate, wherein a first semiconductor layer, a light emitting layer, and a second semiconductor layer are sequentially disposed on the substrate; subjecting the first semiconductor layer, the light emitting layer, and the second semiconductor layer with a patterning process to form a first depressed portion, a second depressed portion, a stacked structure disposed on the second depressed portion and a remained first semiconductor layer disposed on the depressed portion, wherein the stacked structure comprises a patterned second semiconductor layer, a patterned emitting layer, and a patterned first semiconductor layer; forming a first electrode on the remained first semiconductor layer of the first depressed portion; and forming a second electrode correspondingly disposed on the patterned second semiconductor layer of the second depressed portion.
摘要:
A modularized illuminating device includes a retaining base, a lighting module, and a light guide element. The retaining base includes an elastic positioning unit. The lighting module is removably disposed on the retaining base, and has a sliding groove and a retaining groove. The light guide element is disposed on the retaining base and faces to the lighting module. When the lighting module is installed to the retaining base along a plugging direction, the elastic positioning unit slides from the sliding groove to the retaining groove to retain the lighting module in the retaining base.
摘要:
An illumination device including a base, a light bar, and a cover is provided. The base has a cavity. The light bar is disposed at the bottom of the cavity and includes a plurality of dot light sources arranged along a first axial direction. The cover is assembled to the base for correspondingly covering the light bar and has a plurality of openings. The distribution density of the openings increases from a corresponding location of a dot light source towards two opposite ends along the first axial direction. A light source and a light module are also provided. Another illumination device including a base and a plurality of light sources is further provided.
摘要:
A light-emitting diode (LED) package structure including a carrier substrate, at least one LED chip, an optical element and a thermal-conductive transparent liquid is provided. The LED chip is disposed on the carrier substrate and has an active layer. The optical element is disposed on the substrate and forms a sealed space with the carrier substrate, and the LED chip is disposed in the sealed space. The thermal-conductive transparent liquid fills up the sealed space.
摘要:
A lighting system for dim ambience has at least one light source module, implemented in an ambience. The light source module has multiple light emitting units. Each unit is respectively controlled to produce a luminance. A luminance detecting unit detects a photonic luminance and a luminance ratio. A processing and operation module calculates a mesopic luminance according to the photonic luminance and the luminance ratio. When the photonic luminance is less than a dim-light setting value, a power control information is obtained by a fitness operation with a given condition set. The power control information is corresponding to an optimized mesopic luminance after fitness. A control unit receives the power control information to modulate the luminance of the light emitting units.
摘要:
A lighting system for dim ambience has at least one light source module, implemented in an ambience. The light source module has multiple light emitting units. Each unit is respectively controlled to produce a luminance. A luminance detecting unit detects a photonic luminance and a luminance ratio. A processing and operation module calculates a mesopic luminance according to the photonic luminance and the luminance ratio. When the photonic luminance is less than a dim-light setting value, a power control information is obtained by a fitness operation with a given condition set. The power control information is corresponding to an optimized mesopic luminance after fitness. A control unit receives the power control information to modulate the luminance of the light emitting units.
摘要:
A light-emitting device package structure includes a carrier, at least one light-emitting device and a magnetic element. The magnetic element aids in enhancing overall luminous output efficiency.
摘要:
A light emitting diode (LED) structure and a LED packaging structure are disclosed. The LED structure includes a sub-mount, a stacked structure, an electrode, an isolation layer and a conductive thin film layer. The sub-mount has a first surface and a second surface opposite the first surface. The stacked structure has a first semiconductor layer, an active layer and a second semiconductor layer that are laminated on the first surface. The electrode is disposed apart from the stacked structure on the first surface. The isolation layer is disposed on the first surface to surround the stacked structure as well as cover the lateral sides of the active layer. The conductive thin film layer connects the electrode to the stacked structure and covers the stacked structure.
摘要:
A correlated color temperature (CCT) modulating method including following steps is provided. A white LED light source is modulated to emit a first white light. At least one LED light source is modulated to emit a second white light, wherein the second white light includes at least one broad-spectrum monochromatic light. The first white light and the second white light are mixed to produce a third white light. The color rendering index (CRI) of the third white light is greater than those of the first white light and the second white light, and the color coordinates of the first white light, the second white light, and the third white light are different from each other. Furthermore, an LED light source module and a package structure thereof are also provided.
摘要:
An ink jet printhead module adapted for use in a printing apparatus, the ink jet printhead module being capable of receiving address signals and chip selection signals from a printhead drive unit of the printing apparatus. The printhead module includes chip control circuits, each being capable of receiving the address signals and receiving a corresponding one of the chip selection signals. Each chip control circuit includes switching circuits and an ink jetting circuit set. Each switching circuit is capable of receiving a corresponding one of the address signals and the corresponding one of chip selection signals and outputting a switching signal. An ink jetting circuit set includes ink jetting circuits, each being capable of receiving the switching signal from the corresponding switching circuit electrically coupled to the ink jetting circuit and determining whether or not to jet out ink based on the received switching signal.