Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a configuration signal indicating a codebook construction configuration for constructing a codebook of sequences for conveying a first type of uplink payload in a resource block that is orthogonal to a second type of uplink payload transmitted from a second UE in the resource block. The UE may construct the codebook of sequences for the first type of uplink payload according to the codebook construction configuration. The UE may generate the first type of uplink payload for transmission using a first sequence from the codebook of sequences. The UE may transmit the first type of uplink payload in the resource block, wherein the first type of uplink payload is multiplexed in the resource block with the second type of uplink payload from the second UE.
Abstract:
The present disclosure provides some embodiments that may facilitate hybrid grant-free UL transmission procedure, in which a user equipment (UE) may encode a first preamble and uplink (UL) control signaling for K repeated attempts of initial transmission; decode an acknowledgement (ACK) feedback or UL grant from the network node in response to receipt of the initial transmission(s); and encode UL data with or without a second preamble for subsequent grant-free UL transmissions. The present disclosure also provides some transmission schemes for UL control signaling for grant-free UL transmission.
Abstract:
Devices and methods of reducing blind decoding attempts of user equipment (UE) suing carrier aggregation are generally described. The UE may determine at least one subframe in a modification period to monitor for a physical downlink control channel (PDCCH) formed in accordance with a Discontinuous Transmission Downlink Control Information (DTX DCI) format. The DTX DCI format may indicate whether the serving cell is in a DTX or non-DTX state. The UE may determine the DTX state of each serving cell from the DTX DCI format and monitor an enhanced PDCCH of each serving cell in the non-DTX state to provide a scheduling assignment for the UE, without monitoring each serving cell in the DTX state. The UE may receive higher layer signaling that indicates a repetition period and subframe offset for DTX DCI format transmissions or a bitmap of the DTX DCI format transmissions for subframes within each modification period.
Abstract:
Devices and methods of reducing overall Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) of user equipment (UE) using a large amount of carrier aggregation are generally described. The UE may receive a subframe from an enhanced NodeB (eNB). The subframe may contain a physical downlink control channel (PDCCH) formed in accordance with a Downlink Control information (DCI) format. The DCI format may comprise a Downlink Assignment Index (DAI) for Time Division Duplexed (TDD) and Frequency Division Duplexed (FDD) operation. The UE may determine, dependent on the DAI, a number and ordering of Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) bits to be transmitted on a Physical Uplink Shared Channel (PUSCH) and subsequently transmit the HARQ-ACK bits.
Abstract:
Apparatus and method for transmitting and receiving a frame including control information in a broadcasting system. A frame for a broadcast service is generated using an in-band signaling scheme, and includes location information of control information in a next frame and indication information indicating a change/no-change in the control information in the next frame. The new frame structure minimizes power consumption of a receiver supporting the broadcast service.
Abstract:
A method and apparatus for multiplexing frequency hopping in a wireless communication system using Orthogonal Frequency Division Multiple Access (OFDMA) is provided. The frequency hopping multiplexing method and apparatus efficiently indicates time division multiplexing for global hopping and local hopping by indicating and using the number and positions of slots for global hopping and local hopping to time-division-multiplex global hopping and local hopping in a reverse link, depending on information the number of Distributed Resource CHannels (DRCHs), provided from a transmitting side over a Forward link Secondary Broadcast Control CHannel (F-SBCCH), which is one of the forward common channels.
Abstract:
A method and apparatus for controlling transmission and reception of dedicated pilots according to an MCS level in a wireless communication system are provided, in which an MCS level is determined for a data channel, the amount of resources for sending dedicated pilots is determined in inverse proportion to the MCS level, a pilot channel signal including basic pilots mapped to resources allocated to a pilot channel, a control channel signal including control information mapped to resources allocated to a control channel, and a data channel signal including the dedicated pilots mapped to the determined amount of resources being part of resources allocated to the data channel and data mapped to the remaining of the resources allocated to the data channel are generated, and the pilot channel signal, the control channel signal, and the data channel signal are multiplexed and sent in the mapped resources.
Abstract:
A method for transmitting an uplink control channel at a terminal in a Single Carrier Frequency Division Multiple Access (SC-FDMA)-based mobile communication system is provided. The transmission method includes receiving a control channel index allocated from a base station; transmitting control information at every symbol through a subband and a Zadoff-Chue sequence offset resource, which are mapped to the control channel index according to a first grouping rule; and transmitting control information through a subband and a Zadoff-Chue sequence offset resource, which are mapped to the control channel index according to a second grouping rule, beginning from a symbol after a slot boundary.
Abstract:
A method is provided for transmitting in-band signaling information in a wireless broadcasting system that transmits broadcast service data through a plurality of data Physical Layer Pipes (PLPs) constituting a frame. Non-PLP signaling information is included in a data PLP for a particular broadcast service and the data PLP is transmitted through a current frame, when no data PLP for the particular broadcast service is transmitted in at least one frame to be transmitted within a maximum schedulable period NMAX from a time the current frame is transmitted. The non-PLP signaling information indicates that no data PLP for the particular broadcast service is transmitted within the maximum schedulable period.
Abstract:
A method is provided for allocating resources of a control channel in a mobile communication system using Orthogonal Frequency Division Multiplexing (OFDM). The method includes, when a time index and a frequency index of available Resource Elements (REs) are defined as 1 and k, respectively, dividing the available REs in a two-dimensional structure of (k, 1); and time-first-allocating each RE to a plurality of RE groups while increasing the time index 1 for each frequency index k from an initial value up to a predetermined range.