Abstract:
A semiconductor device including an interconnection structure including a copper pad, a pad barrier layer and a metal redistribution layer, an interconnection structure thereof and methods of fabricating the same are provided. The semiconductor device includes a copper pad disposed on a first layer, a pad barrier layer including titanium disposed on the copper pad, an inorganic insulating layer disposed on the pad barrier layer, a buffer layer disposed on the inorganic insulating layer, wherein the inorganic insulating layer and the buffer layer expose a portion of the pad barrier layer, a seed metal layer disposed on the exposed buffer layer, a metal redistribution layer disposed on the seed metal layer, and a first protective layer disposed on the metal redistribution layer.
Abstract:
A semiconductor device includes a semiconductor substrate and a via electrode. The via electrode has a first portion on the substrate and extends towards the substrate and has a plurality of spikes that extends from the first portion into the substrate, each of the spikes being spaced apart form one another.
Abstract:
In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
Abstract:
The invention provides a semiconductor device. The semiconductor device includes a semiconductor chip having an active surface on which pads are disposed, a passivation layer pattern disposed to cover the active surface of the semiconductor chip and to expose the pads, a first insulation layer pattern disposed on the passivation layer pattern, a second insulation layer pattern disposed on only a portion of the first insulation layer pattern, and redistribution line patterns electrically connected to the pads and disposed so as to extend across the second insulation layer pattern and the first insulation layer pattern. A method of fabricating the same is also provided.
Abstract:
A wafer level semiconductor module may include a module board and an IC chip set mounted on the module board. The IC chip set may include a plurality of IC chips having scribe lines areas between the adjacent IC chips. Each IC chip may have a semiconductor substrate having an active surface with a plurality of chip pads and a back surface. A passivation layer may be provided on the active surface of the semiconductor substrate of each IC chip and may having openings through which the chip pads may be exposed. Sealing portions may be formed in scribe line areas.
Abstract:
Provided is a method of fabricating a chip-on-chip (COC) semiconductor device. The method of fabricating a chip-on-chip (COC) semiconductor device may include preparing a first semiconductor device with a metal wiring having at least one discontinuous spot formed therein, preparing a second semiconductor device with at least one bump formed on a surface of the second semiconductor device corresponding to the at least one discontinuous spot, aligning the first semiconductor device onto the second semiconductor device, and connecting the at least one bump of the second semiconductor device to the at least one discontinuous spot formed in the metal wiring of the first semiconductor device.
Abstract:
Wafer level packages and methods of fabricating the same are provided. In one embodiment, one of the methods comprises forming semiconductor chips having a connection pad on a wafer, patterning a bottom surface of the wafer to form a trench under the connection pad, patterning a bottom surface of the trench to form a via hole exposing the bottom surface of the connection pad, and forming a connecting device connected to the connection pad through the via hole. The invention provides a wafer level package having reduced thickness, lower fabrication costs, and increased reliability compared to conventional packages.
Abstract:
Provided are a wafer level chip scale package in which a redistribution process is applied at a wafer level, a manufacturing method thereof, and a semiconductor chip module including the wafer level chip scale package. The wafer level chip scale package includes a semiconductor chip having a bonding pad, a first insulating layer disposed on the semiconductor chip so as to expose the bonding pad, a redistribution line disposed on the exposed bonding pad and the first insulating layer, a sacrificial layer disposed below a redistribution pad of the redistribution line, a second insulating layer disposed on the redistribution line so as to expose the redistribution pad and including a crack inducement hole disposed beside the sacrificial layer, and an external connection terminal attached to the redistribution pad.
Abstract:
A semiconductor device having a through electrode and a method of fabricating the same are disclosed. In one embodiment, a semiconductor device includes a first insulating layer formed on a semiconductor substrate. A wiring layer having a first aperture to expose a portion of the first insulating layer is formed on the first insulating layer. A second insulating layer is formed on an upper portion of the wiring layer and in the first aperture. A conductive pad having a second aperture to expose a portion of the second insulating layer is formed on the second insulating layer. A through hole with a width narrower than widths of the first and second apertures is formed through the first and second insulating layers and an upper portion of the semiconductor substrate. A through electrode is formed in the through hole.
Abstract:
A bottle cap is disclosed, which displays an opened state and cannot contain contents again once it is opened. The bottle cap includes a cap having a screw formed on its inner surface to be engaged with a screw formed on an outer surface of a nozzle of a bottle, a reverse moving means connected to the cap and ascending in a direction opposite to a descending direction of the cap as the cap is rotated downwardly, a rod shaped nut having a screw engaged with the reverse moving means and moving up and down in a screw direction without rotation, and a display installed in the lower portion of the nut, displaying an opened state of the cap by hanging a part of the cap in the nozzle as the cap is moved downwardly by being pushed by the nut if the cap is opened.