Abstract:
Aramid paper with high surface smoothness is offered, wherein [said aramid paper] is characterized by the fact that a surface layer, which contains 100 wt % of poly(metaphenylene isophthalamide) fibrids, which weighs less than 10 g/m.sup.2, and which has a coating ratio of 97% or higher, and an intermediate layer, which comprises 70 to 90 wt % of poly(metaphenylene isophthalamide) fibrids and 10 to 30 wt % of poly(metaphenylene isophthalamide) flocks and weighs 20 g/m.sup.2 or less, are laminated successively on at least one side of the substrate layer which comprises 25 to 60 wt % of said fibrids and 40 to 75 wt % of said flocks, that the surface smoothness of the surface layer is 40 sec per 10 cc or higher, and that the number of fuzz fibers at least 1 mm long, which are generated by surface friction, does not exceed 5 fibers per 25 cm.sup.2. Said aramid paper can be suitably used as electrical insulation paper, heat-resistant labeling paper, heat resistant paper, and the like.
Abstract:
Disclosed is a multi-layer paper suitable as a material for preparing heat-sensitive stencil printing masters. The multi-layer paper is produced by combining a plurality of thin paper layers by paper making. The multi-layer paper has a peel strength of 10 N/m or less and may be delaminated into at least two tissue sheets.
Abstract:
A laminate suitable for electrostatic discharge interference and/or electromagnetic interference shielding comprising a polymetaphenylene isophthalamide fiber layer on one or both sides of a conducting layer comprising conducting fibers and polymetaphenylene isophthalamide fibers.
Abstract:
A process for producing an electroconductive film having a volume resistivity of fiber oriented direction of not more than 1.times.10.sup.8 ohm cm comprising mixing from 94.5% to 40% volume of a thermoplastic synthetic pulp with from 5% to 30% by volume of thermoplastic composite fibers comprising of a first component having a lower melting point than that of said thermoplastic synthetic pulp and a second component having a higher melting point than that of said thermoplastic synthetic pulp, and from 0.5% to 30% by volume of electroconductive fibers to prepare a paper stock; forming a wet web from the paper stock; heating and drying said wet web at a specific first temperature to melt the first component of the composite fibers, thereby forming a base paper; and thereafter heating said base paper under pressure at a specific second temperature to melt the thermoplastic synthetic pulp, thereby forming a film having dispersed said second component and said electroconductive fibers therein.