摘要:
The present invention relates to a resin composition for a nano concave-convex structure, including 0.01 to 10 parts by mass of an active energy ray polymerization initiator (D), 0.01 to 3 parts by mass of a release agent (E), and 0.01 to 3 parts by mass of a lubricant (F), relative to 100 parts by mass of a polymerization reactive monomer component containing 50 to 95 parts by mass of a tetrafunctional (meth)acrylate monomer (A), 5 to 35 parts by mass of a difunctional (meth)acrylate monomer (B) in which the total number of repeating units within a polyalkylene glycol structure is from 4 to 25, and not more than 15 parts by mass of a monofunctional (meth)acrylate monomer (C) which is copolymerizable with the monomers (A) and (B), and relates to a transparent member for the monitor of a vehicle navigation device and the cover of a vehicle meter.
摘要:
A detection circuit is mounted on an electronic device having a communication function, including at least a battery, a CPU, and a communication unit, and is configured to detect the remaining battery charge. An A/D converter performs sampling of a magnitude of a current IBAT discharged from the battery, and converts the current IBAT thus sampled into a digital current value. An interface circuit receives, from the CPU, control data which indicates a period in which there is an increase in the current discharged from the battery. Based upon the control data, a control unit raises the sampling frequency of the A/D converter in the period in which there is an increase in the current IBAT.
摘要翻译:检测电路安装在具有通信功能的电子设备上,至少包括电池,CPU和通信单元,并且被配置为检测剩余电池电量。 A / D转换器对从电池放电的电流IBAT的大小进行采样,并将由此采样的电流IBAT转换为数字电流值。 接口电路从CPU接收指示从电池释放的电流增加的期间的控制数据。 基于控制数据,控制单元在当前IBAT增加的时段内提高A / D转换器的采样频率。
摘要:
A drive circuit controls the on/off state of a switching transistor of a DC/DC converter. A first resistor is provided on a path of current flowing through a primary coil of a transformer connected to the switching transistor, and one end of the first resistor is grounded. A second resistor is provided on a path of current flowing through a secondary coil of the transformer, and one end of the second resistor is grounded. A switching controller turns off the switching transistor when a first detection voltage exceeds a first threshold voltage and, turns on the switching transistor after lapse of predetermined delay time since a second detection voltage exceeds the second threshold voltage.
摘要:
This high-frequency waveguide is formed by first and second conductors (22, 23) disposed opposite each other at a spacing of λ0/2, where λ0 is the free space wavelength of the operating frequency of a high-frequency signal. A ridge (25) is provided at the waveguide formation portion between these first and second conductors (22, 23), which protrudes from one of the first and second conductors (22, 23) toward the other and is formed extending along the waveguide formation portion. A plurality of columnar protrusions (24) with a height of λ0/4 are disposed at a spacing of less than λ0/2 to at least one of the first and second conductors (22, 23) on the outside of the waveguide formation portion and to the outside of the ridge (25).
摘要:
A control circuit is provided for a separately excited DC/DC converter which directly monitors output voltage to detect a short-circuit state, and performs overcurrent protection. A switching controller of the control circuit controls a switching operation of a switching transistor of the separately excited DC/DC converter. A voltage comparator compares the output voltage and a threshold voltage, to detect the short-circuit state. After a predetermined start-up time has elapsed after beginning start-up of the separately excited DC/DC converter, when the voltage comparator detects the short-circuit state, the switching controller halts the switching operation of the switching transistor, and makes detection of the short-circuit state by the voltage comparator non-operative before elapse of the start-up time. After detecting the short-circuit state and halting the switching operation of the switching transistor for a predetermined halt time, the switching controller begins start-up of the separately excited DC/DC converter once again.
摘要:
A driving apparatus drives a mover arranged for feedback of a touch panel. A reference voltage generation unit generates a reference voltage having a signal waveform to be applied to the mover. A pulse modulator generates a PWM signal of which duty ratio is controlled by feedback so that a feedback voltage corresponding to a drive voltage to be applied to the mover approaches the reference voltage. A switching element of the DC/DC converter is turned ON/OFF by a PWM signal from the pulse modulator, so that an output voltage of the DC/DC converter is controlled, and a drive voltage corresponding to the output voltage is applied to the mover.
摘要:
In a power supply apparatus for performing constant current driving of a light emitting diode which is a load circuit, a constant current circuit is disposed on a path for driving the load circuit. A charge pump circuit which is a voltage generating circuit outputs a driving voltage to the light emitting diode. A monitoring circuit monitors the voltage across the two ends of the constant current circuit. This monitoring circuit includes a voltage source which generates a threshold voltage that follows the fluctuation of the voltage at which the constant current circuit can operate stably, compares the voltage across the two ends of the constant current circuit and the threshold voltage generated by the voltage source, and outputs a comparison result Vs to a control unit. The control unit controls the charge pump circuit on the basis of the output of the monitoring circuit.
摘要:
An output voltage monitoring circuit monitors an output voltage of a capacitor charging circuit. A first sample-and-hold circuit samples and holds a voltage of a connection point of a primary coil of a transformer and a switching transistor. A first monitoring comparator compares output of the first sample-and-hold circuit with a predetermined first reference voltage. When the output of the first sample-and-hold circuit exceeds the first reference voltage, a signal processor executes predetermined signal processing. The first sample-and-hold circuit starts a sampling period after a predetermined first time has elapsed after the switching transistor is turned OFF. When a voltage drop across a detection resistor reaches a third reference voltage, the first sample-and-hold circuit ends the sampling period.
摘要:
A control circuit of a DC/DC converter is provided for supplying a driving voltage to a light emitting element. A hysteresis comparator compares a detection voltage that corresponds to the output voltage of the DC/DC converter with two threshold voltages. If the detection voltage is smaller than the lower threshold voltage, the hysteresis comparator outputs a comparison signal at the low level. Otherwise, the comparison signal is set to the high level. The switching control unit uses the comparison signal as a reference. The switching control unit instructs the switching transistor of the DC/DC converter to perform the switching operation during a period when the comparison signal is at the low level. Otherwise, the switching operation is suspended. The control circuit inhibits light emission of the light emitting element during a period when the comparison signal is at the low level. Otherwise, the control circuit permits the light emission.
摘要:
A data transmission system capable of transmitting data at high speed without being bound by a counterpart's power supply voltage can be realized. The data transmission system comprises multiple electronic equipment having individual power supplies, a cable for connecting between the multiple electronic equipment so as to transmit signals therebetween, digital data transmitting circuits extending between the multiple electronic equipment and the cable and each having an open drain type output section at the transmitting end, and an input section provided with a pull-up type resistor at the receiving end, wherein the resistor and the output section are moved from the electronic equipment to the connector of the cable so that parasitic capacitance for restricting time constant of waveforms of signals when rising is changed from a capacitance to a small capacitance.