Abstract:
A cooling system of an electric vehicle includes a cooling medium circulation path that circulates a cooling medium to an electrically powered drive unit of a vehicle, a heat exchange unit between the cooling medium and external air, a cooling medium circulation unit, a blower unit that blows air against the heat exchange unit, and a control unit that controls the cooling medium circulation unit and the blower unit, thus controlling cooling of the electrically powered drive unit. The control unit controls the cooling medium circulation unit and the blower unit in a first cooling mode, when a drive force for the vehicle is in a first operational region, and controls in a second cooling mode that provides a higher cooling capability than the first cooling mode, when the drive force for the vehicle is in a second operational region that is higher than the first operational region.
Abstract:
A rotating electrical machine includes: a stator that includes a stator core and a stator coil; a rotor that rotates with respect to the stator; a refrigerant supply port through which a cooling medium is supplied to a coil end protruding from the stator core; and a guide member, disposed along at least a part of the coil end, for causing the cooling medium supplied through the refrigerant supply port to flow along the coil end.
Abstract:
An electric drive system for a vehicle includes: an electric drive unit that electrically drives the vehicle; and a cooling unit that cools the electric drive unit, wherein: the electric drive unit and the cooling unit are mounted at a body frame of the vehicle via an elastic support member, the electric drive unit and the cooling unit being configured as an integrated unit.
Abstract:
To uniformly cool down armature windings along the circumferential direction of a stator in a generator motor. A generator motor includes a stator 1 fixed to the inner diameter side of a housing 18, a rotor 130 rotatably supported by bearings 5, and armature windings wound around the teeth of a stator core 110. Each of brackets 200 provided via the bearings 5 has a passage 201, 202 through which cooling oil flows and injection holes 204 which communicate with the passage and inject cooling oil at positions opposite to winding ends of the armature windings. Cooling oil is injected toward the winding ends of the armature windings from the injection holes 204 of the brackets 200 arranged on opposite axial sides of a shaft 6. In the flow rate distribution of the oil from the plurality of the injection holes 204, the flow rate of the oil from any of the injection holes 204 is set to be greater as the position of the injection hole 204 is higher above the level of the shaft 6. The arrangement pitch among the injection holes 204 provided on each of the brackets 200 is dense in a vertically upper portion of the bracket 200, and gradually sparser in a portion thereof closer to the level of shaft 6.
Abstract:
Disclosed is an electric rotating machine that includes a stator and a rotor. The stator includes a housing and a cylindrical stator core secured to the housing by shrinkage fitting. The rotor is rotatably disposed inside the stator. The stator core is formed of two or more circumferentially split cores. Spilt surfaces of the split cores are shaped in such a manner that the amount of distortion caused on the split surfaces on the outside diameter side by the shrinkage fitting is greater than the amount of distortion caused on the split surfaces on the inside diameter side by the shrinkage fitting.
Abstract:
A control system for an electric vehicle includes: an electricity storage device that performs charging and discharging of electrical power; a plurality of load devices that receive supply of electrical power from the electricity storage device and perform operations; and a control device that controls the electricity storage device and the plurality of load devices. And when electrical power is supplied from the electricity storage device to the plurality of load devices, the control device calculates a charge/discharge efficiency of the electricity storage device and a working efficiency of each of the load devices, and regulates an amount of electrical power supplied from the electricity storage device to each of the load devices, so as to enhance an overall efficiency of the electricity storage device and the plurality of load devices.
Abstract:
A vehicle air-conditioning apparatus, including: a refrigerant circulation channel that flows a refrigerant, the refrigerant circulation channel provided in a refrigeration cycle system including, as connected in a cyclic pattern, a compressor for the refrigerant, an outdoor heat-exchanger exchanging heat between the refrigerant and an outdoor air, an expansion valve reducing pressure of the refrigerant, and an air-conditioning heat-exchange circuit exchanging heat between the refrigerant and air to be introduced into a vehicle interior; and an equipment heat-exchange circuit connected in parallel to the circuit and exchanging heat between the refrigerant and in-vehicle equipment. The circuit includes a cooling heat-transfer medium circulation channel that circulates a heat-transfer medium for cooling. The cooling channel has a cooling heat-exchanger exchanging heat between the refrigerant in the channel and a cooling heat-transfer medium for cooling the in-vehicle equipment and a cooling circulation pump for circulating the cooling heat-transfer medium.
Abstract:
A motor is provided which can detect a rotor temperature with high precision with a simple configuration not taking an influence on a temperature caused by circulation of a cooling oil into account. In a motor including a rotor, a stator arranged around the rotor, and a temperature sensor, the rotor includes an oil reservoir unit that reserves an oil on a rotating shaft line in an interior thereof, and the temperature sensor detects a temperature of the oil reserved in the oil reservoir unit.
Abstract:
To uniformly cool down armature windings along the circumferential direction of a stator in a generator motor. A generator motor includes a stator 1 fixed to the inner diameter side of a housing 18, a rotor 130 rotatably supported by bearings 5, and armature windings wound around the teeth of a stator core 110. Each of brackets 200 provided via the bearings 5 has a passage 201, 202 through which cooling oil flows and injection holes 204 which communicate with the passage and inject cooling oil at positions opposite to winding ends of the armature windings. Cooling oil is injected toward the winding ends of the armature windings from the injection holes 204 of the brackets 200 arranged on opposite axial sides of a shaft 6. In the flow rate distribution of the oil from the plurality of the injection holes 204, the flow rate of the oil from any of the injection holes 204 is set to be greater as the position of the injection hole 204 is higher above the level of the shaft 6. The arrangement pitch among the injection holes 204 provided on each of the brackets 200 is dense in a vertically upper portion of the bracket 200, and gradually sparser in a portion thereof closer to the level of shaft 6.
Abstract:
A vehicle air-conditioning apparatus, including: a refrigerant circulation channel that flows a refrigerant, the refrigerant circulation channel provided in a refrigeration cycle system including, as connected in a cyclic pattern, a compressor for the refrigerant, an outdoor heat-exchanger exchanging heat between the refrigerant and an outdoor air, an expansion valve reducing pressure of the refrigerant, and an air-conditioning heat-exchange circuit exchanging heat between the refrigerant and air to be introduced into a vehicle interior; and an equipment heat-exchange circuit connected in parallel to the circuit and exchanging heat between the refrigerant and in-vehicle equipment. The circuit includes a cooling heat-transfer medium circulation channel that circulates a heat-transfer medium for cooling. The cooling channel has a cooling heat-exchanger exchanging heat between the refrigerant in the channel and a cooling heat-transfer medium for cooling the in-vehicle equipment and a cooling circulation pump for circulating the cooling heat-transfer medium.