Abstract:
A method and apparatus is described herein for supporting direct memory accesses between peer I/O devices. It is determined whether a guest physical address (GPA) referenced by an access generated from an I/O device, is within a range of GPAs associated with local I/O devices based at least in part on a GPA base and a GPA window size. If the GPA is within the window, then the GPA is translated to an HPA based at least in part on a base HPA associated with a local device and then forwarded to that local device. However, if the GPA is not within the window, then the access is forwarded upstream.
Abstract:
In one embodiment of the present invention, a method includes verifying a master processor of a system; validating a trusted agent with the master processor if the master processor is verified; and launching the trusted agent on a plurality of processors of the system if the trusted agent is validated. After execution of such a trusted agent, a secure kernel may then be launched, in certain embodiments. The system may be a multiprocessor server system having a partially or fully connected topology with arbitrary point-to-point interconnects, for example.
Abstract:
A method and system of deadlock free bus protection of memory and I/O resources during secure execution. A bus cycle initiates entry of a bus agent into a secure execution mode. The chipset records an identifier of the secure mode processor. Thereafter, the chipset intercedes if another bus agent attempts a security sensitive bus cycle before the secure mode processor exits the secure mode.
Abstract:
In one embodiment of the present invention, a method includes verifying an initiating logical processor of a system; validating a trusted agent with the initiating logical processor if the initiating logical processor is verified; and launching the trusted agent on a plurality of processors of the system if the trusted agent is validated. After execution of such a trusted agent, a secure kernel may then be launched, in certain embodiments. The system may be a multiprocessor server system having a partially or fully connected topology with arbitrary point-to-point interconnects, for example.
Abstract:
Delivering a Direct Proof private key to a device installed in a client computer system in the field may be accomplished in a secure manner without requiring significant non-volatile storage in the device. A unique pseudo-random value is generated and stored in the device at manufacturing time. The pseudo-random value is used to generate a symmetric key for encrypting a data structure holding a Direct Proof private key and a private key digest associated with the device. The resulting encrypted data structure is stored on a protected on-liner server accessible by the client computer system. When the device is initialized on the client computer system, the system checks if a localized encrypted data structure is present in the system. If not, the system obtains the associated encrypted data structure from the protected on-line server using a secure protocol. The device decrypts the encrypted data structure using a symmetric key regenerated from its stored pseudo-random value to obtain the Direct Proof private key. If the private key is valid, it may be used for subsequent authentication processing by the device in the client computer system.
Abstract:
A method and apparatus is provided for securing a region in a memory of a computer. According to one embodiment, the method comprises halting of all but one of a plurality of processors in a computer. The halted processors entering into a special halted state. Content is loaded into the region only after the halting of all but the one of the plurality of processors and the region is protected from access by the halted processors. The method further comprises placing the non-halted processor into a known privileged state, and causing the halted processors to exit the halted state after the non-halted processor has been placed into the known privileged state.
Abstract:
A processing system has a processor that can operate in a normal ring 0 operating mode and one or more higher ring operating modes above the normal ring 0 operating mode. In addition, the processor can operate in an isolated execution mode. A memory in the processing system may include an ordinary memory area that can be accessed from the normal ring 0 operating mode, as well as an isolated memory area that can be accessed from the isolated execution mode but not from the normal ring 0 operating mode. The processing system may also include an operating system (OS) nub, as well as a key generator. The key generator may generate an OS nub key (OSNK) based at least in part on an identification of the OS nub and a master binding key (BK0) of the platform. Other embodiments are described and claimed.
Abstract:
In one embodiment, a method comprises configuring an access transaction generated by a processor by a configuration storage containing configuration parameters. The processor has a normal execution mode and an isolated execution mode. The access transaction has access information. In a further embodiment, a method comprises checking the access transaction by an access checking circuit using at least one of the configuration parameters and the access information.
Abstract:
In one embodiment, a method of remote attestation for a special mode of operation. The method comprises storing an audit log within protected memory of a platform. The audit log is a listing of data representing each of a plurality of IsoX software modules loaded into the platform. The audit log is retrieved from the protected memory in response to receiving a remote attestation request from a remotely located platform. Then, the retrieved audit log is digitally signed to produce a digital signature for transfer to the remotely located platform.
Abstract:
A hand winch that includes a drum for carrying a strand wound thereon and including gear teeth, a drive gear having teeth thereon mounted in a driving relation to the gear teeth of the drum, and a handle assembly mounted on the drive gear for rotating the drive gear as the handle assembly is rotated. An engagement assembly 8 is positioned intermediate the drive gear and the handle assembly for winding the strand onto or off of the drum by the handle assembly when the strand is under tension and disengaging the handle assembly from the drive gear when tension on the strand is released to allow the drum to rotate while the handle assembly is stationary.